Skip to main content
Dryad

Tomato fruit quality traits and metabolite content are affected by reciprocal crosses and heterosis

Abstract

Heterosis occurs when the F1 individuals exhibit increased performance for a number of traits compared to their parental lines. On the other hand, reciprocal hybrids are obtained by changing the cross direction (or the sexual role) of parental genotypes in a cross. Both biological phenomena could affect the external and internal attributes of fleshy fruits. This work aimed to detect reciprocal effects and heterosis in different tomato (Solanum lycopersicum) for fruit quality traits and metabolite content. Twelve agronomic fruit traits and 28 metabolites identified and estimated by 1H NMR were evaluated in five cultivars grown in two environments. Due to the genotype component was the most important over the phenotype, the traits were evaluated following a full diallel mating design among those cultivars, in greenhouse. Data demonstrated that hybrids performed a higher phenotypic diversity than parental lines. Although both type of traits displayed reciprocal effect and heterosis, the metabolites had a bigger impact on generating this variation, mainly the amino acids. This coincided with the fact that agronomic traits were more influenced by GCA and metabolites by SCA. Furthermore, a relationship between genetic distance between parental lines and reciprocal effect or heterosis was not found. Hybrids with heterosis and high content of metabolites related to tomato flavour and nutritional components were obtained. Results of this work highlight the impact of selecting the role of a cultivar as male or female in a cross to enhance the variability of fruit attributes through hybrids as well as the possibility to exploit heterosis.