Data for: Many-body thermodynamics on quantum computers via partition function zeros
Data files
Jun 29, 2021 version files 61.28 KB
-
8siteIsing_J_0.9_Jz_-1_beta_10.txt
14 KB
-
8siteIsing_J_1_Jz_-1_beta_10.txt
13.98 KB
-
8sitexx_J_1.1_Jz_-1_beta_10.txt
2.79 KB
-
8sitexx_J_1.2_Jz_-1_beta_10.txt
2.79 KB
-
Figure4__FreeEnergy_data_exact.txt
950 B
-
Figure4__FreeEnergy_data_machine.txt
84 B
-
L_bothselec_dataJ09.txt
597 B
-
L_bothselec_dataJ096.txt
595 B
-
L_bothselec_dataJ120.txt
591 B
-
L_Rawdata_J09.txt
597 B
-
L_Rawdata_J096.txt
596 B
-
L_Rawdata_J120.txt
591 B
-
L_symselec_dataJ09.txt
599 B
-
L_symselec_dataJ096.txt
597 B
-
L_symselec_dataJ120.txt
591 B
-
L_values_exact.txt
15.64 KB
-
L_values_linearshiftmodel.txt
1.08 KB
-
README.txt
4.62 KB
Jul 06, 2021 version files 61.34 KB
-
8siteIsing_J_0.9_Jz_-1_beta_10.txt
14 KB
-
8siteIsing_J_1_Jz_-1_beta_10.txt
13.98 KB
-
8sitexx_J_1.1_Jz_-1_beta_10.txt
2.79 KB
-
8sitexx_J_1.2_Jz_-1_beta_10.txt
2.79 KB
-
Figure4__FreeEnergy_data_exact.txt
950 B
-
Figure4__FreeEnergy_data_machine.txt
144 B
-
L_bothselec_dataJ09.txt
597 B
-
L_bothselec_dataJ096.txt
595 B
-
L_bothselec_dataJ120.txt
591 B
-
L_Rawdata_J09.txt
597 B
-
L_Rawdata_J096.txt
596 B
-
L_Rawdata_J120.txt
591 B
-
L_symselec_dataJ09.txt
599 B
-
L_symselec_dataJ096.txt
597 B
-
L_symselec_dataJ120.txt
591 B
-
L_values_exact.txt
15.64 KB
-
L_values_linearshiftmodel.txt
1.08 KB
-
README.txt
4.62 KB
Abstract
Partition functions are ubiquitous in physics: they are important in determining the thermodynamic properties of many-body systems, and in understanding their phase transitions. As shown by Lee and Yang, analytically continuing the partition function to the complex plane allows us to obtain its zeros and thus the entire function. Moreover, the scaling and nature of these zeros can elucidate phase transitions. Here we show how to find partition function zeros on noisy intermediate-scale trapped ion quantum computers in a scalable manner, using the XXZ spin chain model as a prototype, and observe their transition from XY-like behavior to Ising-like behavior as a function of the anisotropy. While quantum computers cannot yet scale to the thermodynamic limit, our work provides a pathway to do so as hardware improves, allowing the future calculation of critical phenomena for systems beyond classical computing limits.
The experimental raw-data is obtained from trapped ion quantum computer. Data after post-selection to this raw-data is also used. Other data is from computer simulations.