Skip to main content
Dryad

Data from: Remote activation of place codes by gaze in a highly visual animal

Data files

May 22, 2025 version files 9.40 GB

Abstract

Vision enables many animals to perform spatial reasoning from remote locations. By viewing distant landmarks, animals recall spatial memories and plan future trajectories. Although these spatial functions depend on hippocampal place cells, the relationship between place cells and active visual behavior is unknown. Here, we studied a highly visual animal, the chickadee, in a behavior that required alternating between remote visual search and spatial navigation. We leveraged the head-directed nature of avian vision to track gaze in freely moving animals. We discovered a profound link between place coding and gaze. Place cells activated not only when the chickadee was in a specific location, but also when it simply gazed at that location from a distance. Gaze coding was precisely timed by fast, ballistic head movements called “head saccades”. On each saccadic cycle, the hippocampus switched between encoding a prediction of what the bird was about to see and a reaction to what it actually saw. The temporal structure of these responses was coordinated by subclasses of interneurons that fired at different phases of the saccade. We suggest that place and gaze coding are components of a unified process by which the hippocampus represents the location that is currently relevant to the animal. This process allows the hippocampus to implement both local and remote spatial functions.

This dataset includes spike sorted data from all cells in the paper, as well as behavioral data from the corresponding sessions.