eLUE-GPP (MODIS): A global gross primary productivity product based on ecosystem light-use-efficiency model and MODIS EVI
Data files
Jun 25, 2024 version files 8.30 GB
-
16d.gif
73.34 MB
-
DataReader.m
806 B
-
DataReader.py
1.14 KB
-
DataReader.R
639 B
-
eLUE-GPP_User_Guide_v1.pdf
700.92 KB
-
FLUXNET_250m_16d.zip
39.26 MB
-
Global_5km_16d_2000.zip
168.84 MB
-
Global_5km_16d_2001.zip
184.41 MB
-
Global_5km_16d_2002.zip
190.33 MB
-
Global_5km_16d_2003.zip
197.44 MB
-
Global_5km_16d_2004.zip
198.35 MB
-
Global_5km_16d_2005.zip
198.69 MB
-
Global_5km_16d_2006.zip
199.88 MB
-
Global_5km_16d_2007.zip
200.37 MB
-
Global_5km_16d_2008.zip
197.94 MB
-
Global_5km_16d_2009.zip
199.13 MB
-
Global_5km_16d_2010.zip
201.59 MB
-
Global_5km_16d_2011.zip
201.34 MB
-
Global_5km_16d_2012.zip
199.83 MB
-
Global_5km_16d_2013.zip
199.66 MB
-
Global_5km_16d_2014.zip
200.67 MB
-
Global_5km_16d_2015.zip
201.68 MB
-
Global_5km_16d_2016.zip
204.04 MB
-
Global_5km_16d_2017.zip
201.79 MB
-
Global_5km_16d_2018.zip
200.18 MB
-
Global_5km_16d_2019.zip
201.58 MB
-
Global_5km_16d_2020.zip
203.22 MB
-
Global_5km_16d_2021.zip
202.61 MB
-
Global_5km_16d_2022.zip
200.50 MB
-
Global_5km_16d_2023.zip
205.52 MB
-
Global_5km_16d_2024.zip
33.78 MB
-
Global_5km_monthly_2000.zip
121.65 MB
-
Global_5km_monthly_2001.zip
128.14 MB
-
Global_5km_monthly_2002.zip
133.38 MB
-
Global_5km_monthly_2003.zip
137.55 MB
-
Global_5km_monthly_2004.zip
139.11 MB
-
Global_5km_monthly_2005.zip
139.40 MB
-
Global_5km_monthly_2006.zip
139.93 MB
-
Global_5km_monthly_2007.zip
139.93 MB
-
Global_5km_monthly_2008.zip
138.75 MB
-
Global_5km_monthly_2009.zip
139.14 MB
-
Global_5km_monthly_2010.zip
140.65 MB
-
Global_5km_monthly_2011.zip
140.75 MB
-
Global_5km_monthly_2012.zip
138.43 MB
-
Global_5km_monthly_2013.zip
139.41 MB
-
Global_5km_monthly_2014.zip
140.29 MB
-
Global_5km_monthly_2015.zip
140.92 MB
-
Global_5km_monthly_2016.zip
143.36 MB
-
Global_5km_monthly_2017.zip
141.22 MB
-
Global_5km_monthly_2018.zip
139.79 MB
-
Global_5km_monthly_2019.zip
140.74 MB
-
Global_5km_monthly_2020.zip
142.48 MB
-
Global_5km_monthly_2021.zip
141.83 MB
-
Global_5km_monthly_2022.zip
140.70 MB
-
Global_5km_monthly_2023.zip
143.15 MB
-
Global_5km_monthly_2024.zip
26.70 MB
-
monthly.gif
38.84 MB
-
README.md
2.86 KB
Aug 16, 2024 version files 7.07 GB
-
16d.gif
442.43 MB
-
DataReader.m
806 B
-
DataReader.py
1.14 KB
-
DataReader.R
639 B
-
eLUE-GPP_User_Guide_v1.pdf
702 KB
-
FLUXNET_250m_16d.zip
38.86 MB
-
Global_5km_16d_2000.zip
125.17 MB
-
Global_5km_16d_2001.zip
135.03 MB
-
Global_5km_16d_2002.zip
135.66 MB
-
Global_5km_16d_2003.zip
149.08 MB
-
Global_5km_16d_2004.zip
150.43 MB
-
Global_5km_16d_2005.zip
150.49 MB
-
Global_5km_16d_2006.zip
151.81 MB
-
Global_5km_16d_2007.zip
152.17 MB
-
Global_5km_16d_2008.zip
149.37 MB
-
Global_5km_16d_2009.zip
150.99 MB
-
Global_5km_16d_2010.zip
153.35 MB
-
Global_5km_16d_2011.zip
153.09 MB
-
Global_5km_16d_2012.zip
151.75 MB
-
Global_5km_16d_2013.zip
151.64 MB
-
Global_5km_16d_2014.zip
152.50 MB
-
Global_5km_16d_2015.zip
153.38 MB
-
Global_5km_16d_2016.zip
156.16 MB
-
Global_5km_16d_2017.zip
153.78 MB
-
Global_5km_16d_2018.zip
152.29 MB
-
Global_5km_16d_2019.zip
152.72 MB
-
Global_5km_16d_2020.zip
154.63 MB
-
Global_5km_16d_2021.zip
154.16 MB
-
Global_5km_16d_2022.zip
151.98 MB
-
Global_5km_16d_2023.zip
157.32 MB
-
Global_5km_16d_2024.zip
21.35 MB
-
Global_5km_monthly_2000.zip
96.53 MB
-
Global_5km_monthly_2001.zip
101.16 MB
-
Global_5km_monthly_2002.zip
106.79 MB
-
Global_5km_monthly_2003.zip
111.64 MB
-
Global_5km_monthly_2004.zip
113.47 MB
-
Global_5km_monthly_2005.zip
113.62 MB
-
Global_5km_monthly_2006.zip
114.19 MB
-
Global_5km_monthly_2007.zip
114.18 MB
-
Global_5km_monthly_2008.zip
112.68 MB
-
Global_5km_monthly_2009.zip
113.32 MB
-
Global_5km_monthly_2010.zip
114.79 MB
-
Global_5km_monthly_2011.zip
114.93 MB
-
Global_5km_monthly_2012.zip
114.42 MB
-
Global_5km_monthly_2013.zip
113.65 MB
-
Global_5km_monthly_2014.zip
114.44 MB
-
Global_5km_monthly_2015.zip
115.07 MB
-
Global_5km_monthly_2016.zip
117.60 MB
-
Global_5km_monthly_2017.zip
115.60 MB
-
Global_5km_monthly_2018.zip
114.10 MB
-
Global_5km_monthly_2019.zip
114.49 MB
-
Global_5km_monthly_2020.zip
116.29 MB
-
Global_5km_monthly_2021.zip
116 MB
-
Global_5km_monthly_2022.zip
114.70 MB
-
Global_5km_monthly_2023.zip
117.39 MB
-
Global_5km_monthly_2024.zip
20.36 MB
-
monthly.gif
234.64 MB
-
README.md
3.13 KB
Jan 16, 2025 version files 7.46 GB
-
16d.gif
459.62 MB
-
DataReader.m
806 B
-
DataReader.py
1.14 KB
-
DataReader.R
639 B
-
eLUE-GPP_User_Guide_v1.pdf
700.72 KB
-
FLUXNET_250m_16d.zip
38.96 MB
-
Global_5km_16d_2000.zip
129.62 MB
-
Global_5km_16d_2001.zip
140.21 MB
-
Global_5km_16d_2002.zip
141.01 MB
-
Global_5km_16d_2003.zip
154.68 MB
-
Global_5km_16d_2004.zip
155.86 MB
-
Global_5km_16d_2005.zip
156.05 MB
-
Global_5km_16d_2006.zip
157.25 MB
-
Global_5km_16d_2007.zip
157.81 MB
-
Global_5km_16d_2008.zip
154.66 MB
-
Global_5km_16d_2009.zip
156.41 MB
-
Global_5km_16d_2010.zip
158.59 MB
-
Global_5km_16d_2011.zip
158.28 MB
-
Global_5km_16d_2012.zip
157.21 MB
-
Global_5km_16d_2013.zip
156.85 MB
-
Global_5km_16d_2014.zip
157.79 MB
-
Global_5km_16d_2015.zip
158.76 MB
-
Global_5km_16d_2016.zip
161.54 MB
-
Global_5km_16d_2017.zip
159.07 MB
-
Global_5km_16d_2018.zip
157.58 MB
-
Global_5km_16d_2019.zip
157.99 MB
-
Global_5km_16d_2020.zip
159.70 MB
-
Global_5km_16d_2021.zip
159.49 MB
-
Global_5km_16d_2022.zip
157.19 MB
-
Global_5km_16d_2023.zip
162.42 MB
-
Global_5km_16d_2024.zip
158.08 MB
-
Global_5km_monthly_2000.zip
96.69 MB
-
Global_5km_monthly_2001.zip
101.37 MB
-
Global_5km_monthly_2002.zip
107.02 MB
-
Global_5km_monthly_2003.zip
111.91 MB
-
Global_5km_monthly_2004.zip
113.73 MB
-
Global_5km_monthly_2005.zip
113.88 MB
-
Global_5km_monthly_2006.zip
114.47 MB
-
Global_5km_monthly_2007.zip
114.44 MB
-
Global_5km_monthly_2008.zip
112.93 MB
-
Global_5km_monthly_2009.zip
113.58 MB
-
Global_5km_monthly_2010.zip
115.06 MB
-
Global_5km_monthly_2011.zip
115.20 MB
-
Global_5km_monthly_2012.zip
114.68 MB
-
Global_5km_monthly_2013.zip
113.91 MB
-
Global_5km_monthly_2014.zip
114.70 MB
-
Global_5km_monthly_2015.zip
115.34 MB
-
Global_5km_monthly_2016.zip
117.87 MB
-
Global_5km_monthly_2017.zip
115.87 MB
-
Global_5km_monthly_2018.zip
114.37 MB
-
Global_5km_monthly_2019.zip
114.76 MB
-
Global_5km_monthly_2020.zip
116.55 MB
-
Global_5km_monthly_2021.zip
116.27 MB
-
Global_5km_monthly_2022.zip
114.96 MB
-
Global_5km_monthly_2023.zip
117.67 MB
-
Global_5km_monthly_2024.zip
119.25 MB
-
monthly.gif
242.36 MB
-
README.md
3.51 KB
Abstract
Gross Primary Productivity (GPP) represents the cumulative amount of carbon dioxide (CO2) assimilated by green plants through photosynthesis at specific time intervals and spatial scales. It is the main component of the carbon exchange between the terrestrial biosphere and the atmosphere, and has a major influence on global climate and terrestrial ecosystem functioning. Over the last two decades, the continuous and reliable collection of global land surface variables by EOS-MODIS, and the parallel development of the eddy-covariance flux tower network (FLUXNET) have enabled the integration of MODIS observations with tower measurements for the calibration and validation of remote sensing models to obtain global GPP estimates. Despite the significant progress and success to date, current remote sensing GPP models based on the light use efficiency (LUE) concept share several limitations, including the difficulty in accurately predicting LUE variability and the associated use of land cover maps and look-up tables for biome specific maximum LUE, further down-regulated by coarse resolution interpolated meteorological data, which introduce significant uncertainties in the predicted GPP. To address the above limitations, here we applied a simple yet ecologically sound remote sensing GPP model based on the ecosystem light use efficiency (eLUE) concept, using the more than two decades of global MODIS Enhanced Vegetation Index (EVI) product and the publicly available FLUXDATA2015 dataset, to generate a global 5 km, 16-d GPP product (eLUE-GPP) from February 2000 to December 2024. Cross-validation with 120 flux tower sites (952.66 site/year) showed favorable accuracy of eLUE-GPP (hereafter GPPeLUE) (R2 = 0.74, RMSE = 2.05 g C m-2 d-1). The uncertainty associated with GPPeLUE is comparatively lower than that of the other global GPP datasets (MOD17, VPM, among others). We have also calculated the uncertainty analytically for each GPP estimate based on the law of error propagation, which allows quantification of the error budget in applications such as Earth system model benchmarking and atmospheric inversion. Our estimate of global total annual GPP, averaged over the period 2001-2024, was 135.53±11.03 Pg C yr-1. Furthermore, we found a significant increasing trend in global total annual GPP at a rate of 0.26±0.06 Pg C yr-1 (p < 0.001) from 2001 to 2024, particularly in eastern Asia, northern India, Europe, eastern North America, and central South America. We expect that the eLUE-GPP product will enable a more accurate diagnostic analysis of the global carbon budget and thus contribute to climate change research.
https://doi.org/10.5061/dryad.v9s4mw74h
The eLUE Gross Primary Productivity (eLUE-GPP) is based on a simple yet ecologically sound ecosystem light use efficiency (eLUE) GPP model, using the more than two decades of global MODIS Enhanced Vegetation Index (EVI) product and the publicly available FLUXDATA2015 dataset, to generate a global GPP product (eLUE-GPP) from February 2000 to December 2024. The eLUE-GPP is available in both global and site scales and at various temporal and spatial resolutions.
Description of the data and file structure
The eLUE-GPP product has two Science Datasets, comprising GPP and GPP uncertainty. To reduce data storage size, the original values have been adjusted to integers. Users are advised to refer to the scaling factors for value restoration when using the data.
The eLUE-GPP dataset provide three subsets at different spatio-temporal resolutions suitable for global and local applications. First, for global applications, we have produced the CMG 0.05° resolution GPP and uncertainty datasets at two temporal resolutions (16-day and monthly) from 18 February 2000 to 31 December 2024. For local applications, we produced 250 m GPP and uncertainty data for 750×750 m footprint centered at each site at 16-day intervals from 18 February 2000 to 31 December 2024 for all 212 global FLUXNET sites.
Files:
- eLUE-GPP User Guide v1: For a detailed description of the data product.
- Global_5km_16d_YYYY.zip: Global CMG 0.05° resolution GPP and uncertainty datasets at 16-day resolution for YYYY (year).
- Global_5km_monthly_YYYY.zip: Global CMG 0.05° resolution GPP and uncertainty datasets at monthly resolution for YYYY (year).
- FLUXNET_250m_16d.zip: 250 m GPP and uncertainty data for 750×750 m footprint centered at each flux tower site at 16-day intervals from 18 February 2000 to 31 March 2024 for all 212 global FLUXNET sites (those included in the FLUXDATA2015 dataset), with one file per site. The site name is denoted by xx-xxx (country code - site abbreviation), the data file is xx-xxx.csv, and MaLab_MCD13Q1_eLUE_GPP_YYYYDDD_YYYYDDD_001_FLUXNET_xx-xxx.jpeg is the time series plot for YYYYDDD_YYYYDDD(start year+DOY to end year+DOY).
- DataReader.R: Code files for reading data in R.
- DataReader.py: Code files for reading data in Python.
- DataReader.m: Code files for reading data in Matlab.
- 16d.GIF: A GIF animation of the spatial distribution of CMG 0.05° resolution GPP with a 16-day temporal resolution from February 18, 2000, to March 31, 2024.
- monthly.GIF: A GIF animation of the spatial distribution of CMG 0.05° resolution GPP with a monthly temporal resolution from February 18, 2000, to March 31, 2024.
Change Log:
- 15-Aug-2024: The eLUE GPP dataset has been updated to reflect a different treatment of negative EVI values in the pre-processing stage. This revision resulted in changes to the calculated FLUXNET 250m 16d, global 5km 16d and monthly GPP datasets.
- 12-Jan-2025: The eLUE GPP dataset has been updated with enhanced quality control measures applied to the FLUXNET2015 dataset during the calculation process. This revision resulted in changes to the calculated FLUXNET 250m 16d, global 5km 16d and monthly GPP datasets. Furthermore, we updated the dataset to the latest version, covering data up to December 2024.
The eLUE Gross Primary Productivity (eLUE-GPP) is based on a simple yet ecologically sound ecosystem light use efficiency (eLUE) GPP model, using the more than two decades of global MODIS Enhanced Vegetation Index (EVI) product and the publicly available FLUXDATA2015 dataset, to generate a global GPP product (eLUE-GPP) from February 2000 to December 2024. The eLUE-GPP is available in both global and site scales and at various temporal and spatial resolutions.