Correlated nanoimaging of structure and dynamics of cation-polaron coupling in hybrid perovskites
Data files
Abstract
Hybrid organic-inorganic perovskites exhibit high photovoltaic performance and other novel photonic functions. While polaron formation is believed to facilitate efficient carrier transport, the elementary processes of the underlying electron-lattice coupling are yet poorly understood because of the multi-scale chemical and structural heterogeneities. Here, we resolve in the combined ground and excited state spatio-spectral ultrafast nanoimaging how structural characteristics are related to both molecular cation and polaron dynamics. We observe nano-scale spatial variations of the formamidinium (FA) cation transient vibrational blue shifts used as a local probe of the non-local polaron-cation coupling. From the correlation with nano-movies of the polaron dynamics, we then infer how a softer more polarizable lattice supports stabile polarons and longer-lived residual carriers. This, together with a relative intra-grain homogeneity in contrast to high inter-grain heterogeneity thus suggests pathways for improved synthesis and device engineering, and that perovskite photonics performance is still far from any fundamental limits.
https://doi.org/10.5061/dryad.zs7h44jkd
Description of the data and file structure
The file structure of Data.zip
is as follows:
Data.zip
├── Excited State
│ ├── 2023_08_01_FADMACs_Spectra_Spots
│ │ ├── 230801 PP
│ │ │ ├── 230801-FADMACs-pos1-Max-0
│ │ │ ├── 230801-FADMACs-pos2_Max-0
│ │ │ ├── 230801-FADMACs-pos2_Min-0
│ │ │ ├── 230801-FADMACs-timetrace-pos3-max-0
│ │ │ ├── 230801-FADMACs-timetrace-pos3-min-0
│ │ │ ├── 230801-FADMACs-timetrace-pos4-max-0
│ │ │ ├── 230801-FADMACs-timetrace-pos4-min-0
│ │ │ ├── 230801-FADMACs-timetrace-pos5-max-0
│ │ │ ├── 230801-FADMACs-timetrace-pos5-min-0
│ │ │ ├── 230801-FADMACs-timetrace-pos6-max-0
│ │ │ ├── 230801-FADMACs-timetrace-pos6-min-0
│ │ │ ├── 230801-FADMACs_Pos1_Max-0
│ │ │ ├── 230801-FADMACs_Pos1_Min-0
│ │ │ ├── 230801-Ge-ref-1ps-0
│ │ │ └── 230801-Ge-ref-1ps-1
│ │ └── 230801 SNOM
│ │ ├── 230801-FADMACs-pos1-1ps-0
│ │ ├── 230801-FADMACs-pos1-1ps-1
│ │ ├── 230801-FADMACs-pos1-1ps-2
│ │ ├── 230801-FADMACs-pos3_1ps-0
│ │ ├── 230801-FADMACs-spectra-pos1-1ps-0
│ │ ├── 230801-FADMACs-spectra-pos4-1ps-0
│ │ ├── 230801-FADMACs-spectra-pos4-5ps-0
│ │ ├── 230801-FADMACs-spectra-pos5-1ps-0
│ │ ├── 230801-FADMACs-spectra-pos6-0
│ │ ├── 230801-FADMACs-timetrace-pos4-max-0
│ │ ├── 230801-FADMACs_Pos1_5ps-0
│ │ ├── 230801-Ge-0
│ │ ├── 230801-Ge-1
│ │ ├── 230801-Ge-2
│ │ ├── 230801-Ge-ref-1ps-0
│ │ ├── 230801-Ge-ref-1ps-forreal-0
│ │ ├── 230801-Ge-test-0
│ │ ├── 230801-Ge-test-1
│ │ ├── 230801-Ge-test-10
│ │ ├── 230801-Ge-test-11
│ │ ├── 230801-Ge-test-2
│ │ ├── 230801-Ge-test-3
│ │ ├── 230801-Ge-test-4
│ │ ├── 230801-Ge-test-5
│ │ ├── 230801-Ge-test-6
│ │ ├── 230801-Ge-test-7
│ │ ├── 230801-Ge-test-8
│ │ └── 230801-Ge-test-9
│ ├── 2023_08_08-FADMACs-Spectra
│ │ ├── 230808 PP
│ │ │ ├── 230808-FADMACs_Timetrace_Max_Pos1-0
│ │ │ ├── 230808-FADMACs_Timetrace_Max_Pos2-0
│ │ │ ├── 230808-FADMACs_Timetrace_Min_Pos1-0
│ │ │ ├── 230808-FADMACs_Timetrace_Min_Pos2-0
│ │ │ ├── 230808-FADMACs_Timetrace_Pos1_Max-0
│ │ │ ├── 230808-FADMACs_Timetrace_Pos3-Max-0
│ │ │ ├── 230808-FADMACs_Timetrace_Pos3-Min-0
│ │ │ ├── 230808-FADMACs_Timetrace_Pos4-Max-0
│ │ │ ├── 230808-FADMACs_Timetrace_Pos4-Min-0
│ │ │ ├── 230808-FADMACs_Timetrace_Pos5_Max-0
│ │ │ ├── 230808-FADMACs_Timetrace_Pos5_Min-0
│ │ │ └── 230808-Ge-Ref_1ps-0
│ │ └── 230808 SNOM
│ │ ├── 230808-FADMACs_1ps_Pos1-0
│ │ ├── 230808-FADMACs_1ps_Pos4-0
│ │ ├── 230808-FADMACs_1ps_Pos5-0
│ │ ├── 230808-FADMACs_5ps_Pos1-0
│ │ ├── 230808-FADMACs_Spectra_Pos2-1ps-0
│ │ ├── 230808-FADMACs_Spectra_Pos2-1ps-1
│ │ ├── 230808-FADMACs_Spectra_Pos2-1ps-2
│ │ ├── 230808-FADMACs_Spectra_Pos2-2.5ps-0
│ │ ├── 230808-FADMACs_Spectra_Pos3-1ps-0
│ │ ├── 230808-FADMACs_Spectra_Pos3-1ps-1
│ │ ├── 230808-FADMACs_Spectra_Pos3-5ps-0
│ │ ├── 230808-Ge-Ref_1ps-0
│ │ ├── 230808-Ge-pp-test-0
│ │ ├── 230808-Ge-pp-test-1
│ │ ├── 230808-Ge-pp-test-2
│ │ ├── 230808-Ge-test-0
│ │ ├── 230808-Ge-test-1
│ │ ├── 230808-Ge-test-2
│ │ ├── 230808-Ge-test-3
│ │ └── 230808-Ge-test-4
│ ├── 2023_08_10_FADMACs_Spectra
│ │ ├── 2023_08_10_Movie
│ │ ├── 230810 PP
│ │ │ ├── 230810-FADMACs-pos1-max-0
│ │ │ ├── 230810-FADMACs-pos1-max-1
│ │ │ ├── 230810-FADMACs-pos1-max-2
│ │ │ ├── 230810-FADMACs-pos1-min-0
│ │ │ ├── 230810-Ge_test-0
│ │ │ └── 230810-Ge_test-1
│ │ └── 230810 SNOM
│ │ ├── 230810-FADMACs-GS-0
│ │ ├── 230810-FADMACs-GS-1
│ │ ├── 230810-FADMACs-pos1-10ps-0
│ │ ├── 230810-FADMACs-pos1-1ps-0
│ │ ├── 230810-FADMACs-pos1-1ps-1
│ │ ├── 230810-FADMACs-pos1-2.5ps-0
│ │ ├── 230810-FADMACs-pos1-2.5ps-1
│ │ ├── 230810-FADMACs-pos1-20ps-0
│ │ ├── 230810-FADMACs-pos1-5ps-0
│ │ ├── 230810-FADMACs-pos2-1ps-0
│ │ ├── 230810-FADMACs-pos2-test-0
│ │ ├── 230810-FADMACs-pos2-test-1
│ │ ├── 230810-FADMACs-test-0
│ │ ├── 230810-FADMACs-test-1
│ │ ├── 230810-Ge-ref-2ps-0
│ │ ├── 230810-Ge-ref-2ps-1
│ │ ├── 230810-Ge-ref-GS-0
│ │ ├── 230810-Ge_test-0
│ │ ├── 230810-Ge_test-1
│ │ ├── 230810-Ge_test-2
│ │ ├── 230810-Ge_test-3
│ │ └── 230810-Ge_test-4
│ ├── 2023_09_26_FADMACs_SinglePoints
│ │ ├── 230926 PP
│ │ │ ├── 230926-FADMACs_Pos1_Max-0
│ │ │ ├── 230926-FADMACs_Pos1_Min-0
│ │ │ ├── 230926-FADMACs_Pos2_Max-0
│ │ │ ├── 230926-FADMACs_Pos2_Min-0
│ │ │ ├── 230926-FADMACs_Pos3_Max-0
│ │ │ ├── 230926-FADMACs_Pos3_Min-0
│ │ │ ├── 230926-FADMACs_Pos4_Max-0
│ │ │ ├── 230926-FADMACs_Pos4_Min-0
│ │ │ ├── 230926-FADMACs_Pos5_Max-0
│ │ │ ├── 230926-FADMACs_Pos5_Min-0
│ │ │ ├── 230926-FADMACs_Pos6_Max-0
│ │ │ └── 230926-FADMACs_Pos6_Min-0
│ │ ├── 230926 SNOM
│ │ │ ├── 230926-FADMACs_GS-0
│ │ │ ├── 230926-FADMACs_GS-1
│ │ │ ├── 230926-FADMACs_GS-2
│ │ │ ├── 230926-FADMACs_GS-3
│ │ │ ├── 230926-FADMACs_Pos1_1ps-0
│ │ │ ├── 230926-FADMACs_Pos2_1ps-0
│ │ │ ├── 230926-FADMACs_Pos2_1ps-1
│ │ │ ├── 230926-FADMACs_Pos3_1ps
│ │ │ ├── 230926-FADMACs_Pos4_1ps-0
│ │ │ ├── 230926-FADMACs_Pos5_1ps-0
│ │ │ ├── 230926-FADMACs_Pos6_1ps-0
│ │ │ ├── 230926-Ge_Ref-0
│ │ │ ├── 230926-Ge_Ref-1
│ │ │ ├── 230926-Test-0
│ │ │ ├── 230926-Test-1
│ │ │ ├── 230926-Test-2
│ │ │ ├── 230926-Test-3
│ │ │ ├── 230926-Test-4
│ │ │ ├── 230926-Test-5
│ │ │ └── 230926-Test-6
│ │ └── AFM
│ └── 2023_10_24_FADMACs_Fluence2
│ ├── 231024 PP
│ │ ├── 231024-FADMACs_100uW_Max-0
│ │ ├── 231024-FADMACs_100uW_Min-0
│ │ ├── 231024-FADMACs_150uW_Max-0
│ │ ├── 231024-FADMACs_150uW_Min-0
│ │ ├── 231024-FADMACs_200uW_Max-0
│ │ ├── 231024-FADMACs_200uW_Min-0
│ │ ├── 231024-FADMACs_250uW_Max-0
│ │ ├── 231024-FADMACs_250uW_Min-0
│ │ ├── 231024-FADMACs_250uW_Min-1
│ │ ├── 231024-FADMACs_300uW_Max-0
│ │ ├── 231024-FADMACs_300uW_Min-0
│ │ ├── 231024-FADMACs_350uW_Max-0
│ │ ├── 231024-FADMACs_350uW_Min-0
│ │ ├── 231024-FADMACs_400uW_Max-0
│ │ ├── 231024-FADMACs_400uW_Min-0
│ │ ├── 231024-FADMACs_450uW_Max-0
│ │ ├── 231024-FADMACs_450uW_Min-0
│ │ ├── 231024-FADMACs_500uW_Max-0
│ │ ├── 231024-FADMACs_500uW_Min-0
│ │ ├── 231024-FADMACs_550uW_Max-0
│ │ └── 231024-FADMACs_550uW_Min-0
│ ├── 231024 SNOM
│ │ ├── 231024-FADMACs_Spectrum_1ps_100uW-0
│ │ ├── 231024-FADMACs_Spectrum_1ps_500uW-0
│ │ └── 231024-GeRef
│ └── Fits
└── Ground State
├── 2022_08_09_FADMACs
├── 2022_10_21_FADMACs
├── 2022_10_23_FADMACs
└── 2022_10_28_FADMACs
The Excited State folder contains data taken with visible pump excitation.
- Folders with 'PP' in the name contain two-phase heterodyne time traces at various positions on the perovskite surface
.dat
: These files are time traces, with the following columns in the following order:- Pump delay stage position t_ref (mm), then data channels 1 - 6 which are the signals resulting from demodulating with a lock-in amplifier at the following frequencies respectively: (ν_tip, ν_tip + Ω_M, ν_tip - Ω_M; 2ν_tip, 2ν_tip + Ω_M, 2ν_tip - Ω_M).
- 'Max' in the title indicates that the time traces were taken at a maximum delay position (ϕ = 0) of the reference arm.
- 'Min' in the title indicates that the time traces were taken at a minimum delay position (ϕ = π) of the reference arm.
- 'X' and 'Y' in the title contain the real and imaginary parts of the demodulated signals.
- The last number before the file extension in the title indicates a trial number. These trials are averaged together before analysis.
- Pump delay stage position t_ref (mm), then data channels 1 - 6 which are the signals resulting from demodulating with a lock-in amplifier at the following frequencies respectively: (ν_tip, ν_tip + Ω_M, ν_tip - Ω_M; 2ν_tip, 2ν_tip + Ω_M, 2ν_tip - Ω_M).
- Folders with 'SNOM' in the name contain interferograms taken at various positions on the perovskite surface as well as varying time delays
.dat
: These files are raw interferograms, with the following columns in the following order:- Reference arm stage position T (µm), then data channels 1 - 6 which are identical to the timetraces as described above.
- 'X' and 'Y' in the title contain the real and imaginary parts of the demodulated signals.
- A value in ps indicates the fixed pump delay T while the spectra were recorded.
- The last number before the file extension in the title indicates a trial number. These trials are averaged together before the analysis
- Reference spectra are taken on Ge, and are included in raw interferogram form with 'ref' or 'Ge' in the title.
- Reference arm stage position T (µm), then data channels 1 - 6 which are identical to the timetraces as described above.
The Ground State folder contains spectral data taken without visible pump excitation.
.txt
: Raw spectra with reference arm stage positions in µm and signal level in V.axz
: Files containing point spectra, array spectra, and atomic force microscopy (AFM) images. There are resources available here for working with this format in Python..xml
: Uncompressed form of .axz files. See the directions above..m/.mat
: Spectra processing code and results. Requires MATLAB..png
: Images from Analysis Studio depicting locations of array points overlaid on AFM topography.
The file structure for Code.zip
is as follows:
Code.zip
├── frames_processing.ipynb
├── sgolay2.py
└── spectra_processing.ipynb
The purpose of these files is as follows:
frames_processing.ipynb
: A Jupyter notebook containing analysis code for processing spatiotemporally resolved signal "movies", including stretched exponential fitting for time traces extracted from the frames.sgolay2.py
: A python file containing an implementation of the 2D Savitzky–Golay filter for data smoothing.spectra_processing.ipynb
: A Jupyter notebook containing analysis code to compare ground and excited state spectra, including Voigt profile fitting.
This dataset was obtained by using a heterodyne pump-probe infrared scanning-scattering near field optical microscopy technique (HPP IR s-SNOM) as established in prior works [Nishida J. et al., Nature Communications 13, 1083 (2022)] to resolve on nanometer spatial and ps temporal scales interactions between carriers and lattice vibrations in perovskite films, providing a way to optimize materials synthesis efforts by controlling material properties that lead to enhanced photovoltaic performance.