Sexually concordant selection on floral traits despite greater opportunity for selection through male fitness
Data files
Oct 17, 2023 version files 11.59 KB
-
data_np_houm.csv
-
README.md
Abstract
Pollinators are important drivers of floral trait evolution, yet plant populations are not always perfectly adapted to their pollinators. Such apparent maladaptation may result from conflicting selection through male and female sexual functions in hermaphrodites.
We studied sex-specific mating patterns and phenotypic selection on floral traits in Aconitum gymnandrum. After genotyping 1786 offspring, we partitioned individual fitness into sex-specific selfed and outcrossed components and estimated phenotypic selection acting through each.
Relative fitness increased with increasing mate number, and more so for male function. This led to greater opportunity for selection through outcrossed male fitness, though patterns of phenotypic selection on floral traits tended to be similar, and with better support for selection through female rather than male fitness components. We detected directional selection through one or more fitness components for larger flower number, larger flowers, and more negative nectar gradients within inflorescences.
Our results are consistent with Bateman’s principles for sex-specific mating patterns and illustrate that, despite the expected difference in opportunity for selection, patterns of variation in selection across traits can be rather similar for the male and female sexual functions. These results shed new light on the effect of sexual selection on the evolution of floral traits.
README: Sexually concordant selection on floral traits despite greater opportunity for selection through male fitness
P_ID: identity for each plant
self_rate: estimated selfing rate, ratio data with no dimension
sirnum_C_P: sire number through outcrossing per plant, measured in number
Re_fit_M_C: relative male outcrossing fitness, ratio data with no dimension
seeds_T_P: seeds produced per plant, measured in number
Re_fit_Fe_T: relative female total fitness, ratio data with no dimension
F_num: number of flowers, measured in number
Me_Galea: Mean Galea height, measured in mm
Me_nectar: mean nectar volume, measured in μL
slop_nectar: nectar gradients, coefficients and with no dimension
mates_male_Fun_T: number of mates they donate pollen, measured in number
mates_female_Fun_T: number of mates they received pollen, measured in number