Skip to main content
Dryad

GLP-1 Increases pre-ingestive satiation via hypothalamic circuits in mice and humans

Data files

Jun 10, 2024 version files 372.73 MB
Jul 16, 2024 version files 372.64 MB

Click names to download individual files

Abstract

GLP-1 receptor agonists (GLP-1RAs) are effective anti-obesity drugs. However, the precise central mechanisms of GLP-1RAs remain elusive. We administered GLP-1RAs to obese patients and observed heightened sense of pre-ingestive satiation. Analysis of human and mouse brain samples pinpointed GLP-1R neurons in the dorsomedial hypothalamus (DMH) as candidates for encoding pre-ingestive satiation. Optogenetic manipulation of DMHGLP-1R neurons caused satiation. Calcium imaging demonstrated that these neurons are actively involved in encoding pre-ingestive satiation. GLP-1RA administration increased the activity of DMHGLP-1R neurons selectively during eating behavior. We further identified an intricate interplay between DMHGLP-1R neurons and arcuate NPY/AgRP neurons (ARCNPY/AgRP), to regulate food intake. Our findings reveal a hypothalamic mechanism through which GLP-1RAs control pre-ingestive satiation, offering novel neural targets for obesity and metabolic diseases.