Skip to main content
Dryad

Data from: Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events?

Cite this dataset

Sorby, Kris L.; Green, Mark P.; Dempster, Tim D.; Jessop, Tim S. (2018). Data from: Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events? [Dataset]. Dryad. https://doi.org/10.5061/dryad.05s45

Abstract

Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia, subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28 &[deg]C to 36 &[deg]C, 1 &[deg]C per 10 minutes), heat hardening plus serotonin (0.056 μg ml-1), heat hardening plus methionine (0.79 mg ml-1), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events.

Usage notes

Location

Australia
Melbourne