Data from: Climatologies at high resolution for the earth's land surface areas
Data files
Aug 10, 2018 version files 7.27 GB
-
CHELSA_bio10_1_land.7z
103.72 MB
-
CHELSA_bio10_10_land.7z
106.64 MB
-
CHELSA_bio10_11_land.7z
101.72 MB
-
CHELSA_bio10_12_land.7z
238.49 MB
-
CHELSA_bio10_13_land.7z
139.58 MB
-
CHELSA_bio10_14_land.7z
59.70 MB
-
CHELSA_bio10_15_land.7z
81.67 MB
-
CHELSA_bio10_16_land.7z
187.87 MB
-
CHELSA_bio10_17_land.7z
94.38 MB
-
CHELSA_bio10_18_land.7z
157.14 MB
-
CHELSA_bio10_19_land.7z
124.04 MB
-
CHELSA_bio10_2_land.7z
17.40 MB
-
CHELSA_bio10_3_land.7z
59.09 MB
-
CHELSA_bio10_4_land.7z
314.42 MB
-
CHELSA_bio10_5_land.7z
108.50 MB
-
CHELSA_bio10_6_land.7z
103.69 MB
-
CHELSA_bio10_7_land.7z
59.89 MB
-
CHELSA_bio10_8_land.7z
112.64 MB
-
CHELSA_bio10_9_land.7z
111.71 MB
-
CHELSA_prec_1_land.7z
92.74 MB
-
CHELSA_prec_10_land.7z
103.37 MB
-
CHELSA_prec_11_land.7z
96.88 MB
-
CHELSA_prec_12_land.7z
94.09 MB
-
CHELSA_prec_2_land.7z
89.63 MB
-
CHELSA_prec_3_land.7z
95.12 MB
-
CHELSA_prec_4_land.7z
96.52 MB
-
CHELSA_prec_5_land.7z
100.09 MB
-
CHELSA_prec_6_land.7z
103.18 MB
-
CHELSA_prec_7_land.7z
109.34 MB
-
CHELSA_prec_8_land.7z
110.11 MB
-
CHELSA_prec_9_land.7z
106.29 MB
-
CHELSA_temp10_1_land.7z
101.37 MB
-
CHELSA_temp10_10_land.7z
104.89 MB
-
CHELSA_temp10_11_land.7z
103.24 MB
-
CHELSA_temp10_12_land.7z
101.93 MB
-
CHELSA_temp10_2_land.7z
101.85 MB
-
CHELSA_temp10_3_land.7z
103.48 MB
-
CHELSA_temp10_4_land.7z
105.36 MB
-
CHELSA_temp10_5_land.7z
106.63 MB
-
CHELSA_temp10_6_land.7z
107.24 MB
-
CHELSA_temp10_7_land.7z
106.94 MB
-
CHELSA_temp10_8_land.7z
106.35 MB
-
CHELSA_temp10_9_land.7z
105.72 MB
-
CHELSA_tmax10_1_land.7z
101.33 MB
-
CHELSA_tmax10_10_land.7z
105.12 MB
-
CHELSA_tmax10_11_land.7z
103.19 MB
-
CHELSA_tmax10_12_land.7z
101.78 MB
-
CHELSA_tmax10_2_land.7z
102 MB
-
CHELSA_tmax10_3_land.7z
103.98 MB
-
CHELSA_tmax10_4_land.7z
106.18 MB
-
CHELSA_tmax10_5_land.7z
107.70 MB
-
CHELSA_tmax10_6_land.7z
108.36 MB
-
CHELSA_tmax10_7_land.7z
108.13 MB
-
CHELSA_tmax10_8_land.7z
107.57 MB
-
CHELSA_tmax10_9_land.7z
106.49 MB
-
CHELSA_tmin10_1_land.7z
102.94 MB
-
CHELSA_tmin10_10_land.7z
106.40 MB
-
CHELSA_tmin10_11_land.7z
104.76 MB
-
CHELSA_tmin10_12_land.7z
103.43 MB
-
CHELSA_tmin10_2_land.7z
103.55 MB
-
CHELSA_tmin10_3_land.7z
105.02 MB
-
CHELSA_tmin10_4_land.7z
106.40 MB
-
CHELSA_tmin10_5_land.7z
107.30 MB
-
CHELSA_tmin10_6_land.7z
107.65 MB
-
CHELSA_tmin10_7_land.7z
107.46 MB
-
CHELSA_tmin10_8_land.7z
107.26 MB
-
CHELSA_tmin10_9_land.7z
107.09 MB
-
README_for_CHELSA_bio10_1_land.docx
15.44 KB
-
README_for_CHELSA_bio10_10_land.docx
15.44 KB
-
README_for_CHELSA_bio10_11_land.docx
15.44 KB
-
README_for_CHELSA_bio10_12_land.docx
15.44 KB
-
README_for_CHELSA_bio10_13_land.docx
15.44 KB
-
README_for_CHELSA_bio10_14_land.docx
15.44 KB
-
README_for_CHELSA_bio10_15_land.docx
15.44 KB
-
README_for_CHELSA_bio10_16_land.docx
15.44 KB
-
README_for_CHELSA_bio10_17_land.docx
15.44 KB
-
README_for_CHELSA_bio10_18_land.docx
15.44 KB
-
README_for_CHELSA_bio10_19_land.docx
15.44 KB
-
README_for_CHELSA_bio10_2_land.docx
15.44 KB
-
README_for_CHELSA_bio10_3_land.docx
15.44 KB
-
README_for_CHELSA_bio10_4_land.docx
15.44 KB
-
README_for_CHELSA_bio10_5_land.docx
15.44 KB
-
README_for_CHELSA_bio10_6_land.docx
15.44 KB
-
README_for_CHELSA_bio10_7_land.docx
15.44 KB
-
README_for_CHELSA_bio10_8_land.docx
15.44 KB
-
README_for_CHELSA_bio10_9_land.docx
15.44 KB
-
README_for_CHELSA_prec_1_land.docx
15.44 KB
-
README_for_CHELSA_prec_10_land.docx
15.44 KB
-
README_for_CHELSA_prec_11_land.docx
15.44 KB
-
README_for_CHELSA_prec_12_land.docx
15.44 KB
-
README_for_CHELSA_prec_2_land.docx
15.44 KB
-
README_for_CHELSA_prec_3_land.docx
15.44 KB
-
README_for_CHELSA_prec_4_land.docx
15.44 KB
-
README_for_CHELSA_prec_5_land.docx
15.44 KB
-
README_for_CHELSA_prec_6_land.docx
15.44 KB
-
README_for_CHELSA_prec_7_land.docx
15.44 KB
-
README_for_CHELSA_prec_8_land.docx
15.44 KB
-
README_for_CHELSA_prec_9_land.docx
15.44 KB
-
README_for_CHELSA_temp10_1_land.docx
15.44 KB
-
README_for_CHELSA_temp10_10_land.docx
15.44 KB
-
README_for_CHELSA_temp10_11_land.docx
15.44 KB
-
README_for_CHELSA_temp10_12_land.docx
15.44 KB
-
README_for_CHELSA_temp10_2_land.docx
15.44 KB
-
README_for_CHELSA_temp10_3_land.docx
15.44 KB
-
README_for_CHELSA_temp10_4_land.docx
15.44 KB
-
README_for_CHELSA_temp10_5_land.docx
15.44 KB
-
README_for_CHELSA_temp10_6_land.docx
15.44 KB
-
README_for_CHELSA_temp10_7_land.docx
15.44 KB
-
README_for_CHELSA_temp10_8_land.docx
15.44 KB
-
README_for_CHELSA_temp10_9_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_1_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_10_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_11_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_12_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_2_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_3_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_4_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_5_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_6_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_7_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_8_land.docx
15.44 KB
-
README_for_CHELSA_tmax10_9_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_1_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_10_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_11_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_12_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_2_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_3_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_4_land.docx
11.48 KB
-
README_for_CHELSA_tmin10_5_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_6_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_7_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_8_land.docx
15.44 KB
-
README_for_CHELSA_tmin10_9_land.docx
15.44 KB
Abstract
High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.
- Karger, Dirk Nikolaus et al. (2017), Climatologies at high resolution for the earth’s land surface areas, Scientific Data, Article-journal, https://doi.org/10.1038/sdata.2017.122
- Martin, Amanda K.; Root, Karen V. (2020), Challenges and Opportunities for Terrapene carolina carolina Under Different Climate Scenarios, Remote Sensing, Article-journal, https://doi.org/10.3390/rs12050836
- Núñez-Campero, Segundo R.; González, Carlos; Rull, Juan; Ovruski, Sergio M. (2022), Maximum Entropy (MaxEnt) as extreme distribution indicator of two Neotropical fruit fly parasitoids in irrigated drylands of Argentina, Bulletin of Entomological Research, Journal-article, https://doi.org/10.1017/s0007485322000013
- Rešetnik, Ivana et al. (2022), Stability in the South, Turbulence Toward the North: Evolutionary History of Aurinia saxatilis (Brassicaceae) Revealed by Phylogenomic and Climatic Modelling Data, Frontiers in Plant Science, Journal-article, https://doi.org/10.3389/fpls.2022.822331
- Botoman, L. et al. (2022), Soil and landscape factors influence geospatial variation in maize grain zinc concentration in Malawi, Scientific Reports, Journal-article, https://doi.org/10.1038/s41598-022-12014-w
- Maynard, Daniel S. et al. (2022), Global relationships in tree functional traits, Nature Communications, Journal-article, https://doi.org/10.1038/s41467-022-30888-2
- Wang, Xingzhong et al. (2022), Fatty acid composition of macroinvertebrate scrapers in relation to environmental conditions in subtropical mountain streams, Environmental Science and Pollution Research, Journal-article, https://doi.org/10.1007/s11356-022-21265-z
- Albers, Ariane; Avadí, Angel; Hamelin, Lorie (2022), A generalizable framework for spatially explicit exploration of soil organic carbon sequestration on global marginal land, Scientific Reports, Journal-article, https://doi.org/10.1038/s41598-022-14759-w
- Sandall, Emily L.; Pinkert, Stefan; Jetz, Walter (2022), Country‐level checklists and occurrences for the world's Odonata (dragonflies and damselflies), Journal of Biogeography, Journal-article, https://doi.org/10.1111/jbi.14457
- Hilário, Renato R. et al. (2021), Temperature and exudativory as drivers of the marmoset ( <i>Callithrix</i> spp.) daily activity period, American Journal of Primatology, Journal-article, https://doi.org/10.1002/ajp.23341
- Patoine, Guillaume et al. (2022), Drivers and trends of global soil microbial carbon over two decades, Nature Communications, Journal-article, https://doi.org/10.1038/s41467-022-31833-z
- Sporbert, Maria et al. (2022), Functional traits influence patterns in vegetative and reproductive plant phenology – a multi‐botanical garden study, New Phytologist, Journal-article, https://doi.org/10.1111/nph.18345
- Wunderlich, Rainer Ferdinand; Mukhtar, Hussnain; Lin, Yu-Pin (2022), Comprehensively evaluating the performance of species distribution models across clades and resolutions: choosing the right tool for the job, Landscape Ecology, Journal-article, https://doi.org/10.1007/s10980-022-01465-1
- Donoghue, Michael J. et al. (2022), Replicated radiation of a plant clade along a cloud forest archipelago, Nature Ecology & Evolution, Journal-article, https://doi.org/10.1038/s41559-022-01823-x
- Ortego, Joaquín; González‐Serna, María José; Noguerales, Víctor; Cordero, Pedro J. (2021), Genomic inferences in a thermophilous grasshopper provide insights into the biogeographic connections between northern African and southern European arid‐dwelling faunas, Journal of Biogeography, Journal-article, https://doi.org/10.1111/jbi.14267
- Wieser, Andreas et al. (2019), Modelling seasonal dynamics, population stability, and pest control in Aedes japonicus japonicus (Diptera: Culicidae), Parasites & Vectors, Journal-article, https://doi.org/10.1186/s13071-019-3366-2
- Borgelt, Jan; Dorber, Martin; Høiberg, Marthe Alnes; Verones, Francesca (2022), More than half of data deficient species predicted to be threatened by extinction, Communications Biology, Journal-article, https://doi.org/10.1038/s42003-022-03638-9
- Arnell, Matilda; Eriksson, Ove (2022), Landscape‐scale range filling and dispersal limitation of woody plants, Journal of Biogeography, Journal-article, https://doi.org/10.1111/jbi.14485
- Salariato, Diego L.; Cano, Asunción; Zuloaga, Fernando O.; Al-Shehbaz, Ihsan A. (2020), Molecular phylogeny of<i>Cremolobus</i>(Brassicaceae) supports the recognition of the new genus<i>Yunkia</i>and demonstrates the high habitat diversity of tribe Cremolobeae, Systematics and Biodiversity, Journal-article, https://doi.org/10.1080/14772000.2020.1739777
- Piot, Niels et al. (2022), Honey bees and climate explain viral prevalence in wild bee communities on a continental scale, Scientific Reports, Journal-article, https://doi.org/10.1038/s41598-022-05603-2
- Martiné, Eric et al. (2022), The South Asian monsoon maintains the disjunction of <i>Rumex hastatus</i> between the western Himalayas and the Hengduan Mountains, southwest China, Nordic Journal of Botany, Journal-article, https://doi.org/10.1111/njb.03706
- Kühn, Nicola et al. (2022), Seeing roots from space: aboveground fingerprints of root depth in vegetation sensitivity to climate in dry biomes, Environmental Research Letters, Journal-article, https://doi.org/10.1088/1748-9326/ac9d4f
- dos Santos, Patrícia et al. (2022), Plant growth forms dictate adaptations to the local climate, Frontiers in Plant Science, Journal-article, https://doi.org/10.3389/fpls.2022.1023595
- Kramer, Isabelle Marie et al. (2022), Genomic profiling of climate adaptation in <i>Aedes aegypti</i> along an altitudinal gradient in Nepal indicates nongradual expansion of the disease vector, Molecular Ecology, Journal-article, https://doi.org/10.1111/mec.16752
- Bureš, Petr et al. (2022), The global biogeography of angiosperm genome size is shaped by climate and range size, [], Posted-content, https://doi.org/10.1101/2022.12.05.519116
- Salariato, Diego L.; Zuloaga, Fernando O. (2021), Ecological and spatial patterns associated with diversification of South American Physaria (Brassicaceae) through the general concept of species, Organisms Diversity & Evolution, Journal-article, https://doi.org/10.1007/s13127-021-00486-z
- Pätsch, Ricarda et al. (2022), Bedrock meadows: A distinct vegetation type in northwestern North America, Applied Vegetation Science, Journal-article, https://doi.org/10.1111/avsc.12702
- Li, Jiangong et al. (2022), Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China, Scientific Reports, Journal-article, https://doi.org/10.1038/s41598-022-26171-5
- Rico, Yessica et al. (2021), Influence of Pleistocene climatic oscillations on the phylogeography and demographic history of endemic vulnerable trees (section<i>Magnolia</i>) of the Tropical Montane Cloud Forest in Mexico, PeerJ, Journal-article, https://doi.org/10.7717/peerj.12181
- Karger, Dirk Nikolaus et al. (2020), CHELSA-TraCE21k: Downscaled transient temperature and precipitation data since the last glacial maximum, , Dataset, https://doi.org/10.16904/envidat.211
- Karger, Dirk Nikolaus et al. (2020), High resolution climate data for Europe, , Dataset, https://doi.org/10.16904/envidat.150
- Karger, Dirk Nikolaus; Zimmermann, Niklaus E. (2018), CHELSAcruts - High resolution temperature and precipitation timeseries for the 20th century and beyond, , Dataset, https://doi.org/10.16904/envidat.159
- Glison, Nicolás et al. (2023), Understanding the Geographic Patterns of Closely-Related Species of Paspalum (Poaceae) Using Distribution Modelling and Seed Germination Traits, Plants, Journal-article, https://doi.org/10.3390/plants12061342
- Malanson, George P.; Testolin, Riccardo; Pansing, Elizabeth R.; Jiménez‐Alfaro, Borja (2023), Area, environmental heterogeneity, scale and the conservation of alpine diversity, Journal of Biogeography, Journal-article, https://doi.org/10.1111/jbi.14573
- Lehnen, Sarah E.; Lombardi, Jason V. (2023), Climate envelope modeling for ocelot conservation planning: peering inside the black box, Ecosphere, Journal-article, https://doi.org/10.1002/ecs2.4477
- Auffret, Alistair G. et al. (2023), More warm‐adapted species in soil seed banks than in herb layer plant communities across Europe, Journal of Ecology, Journal-article, https://doi.org/10.1111/1365-2745.14074
- Groner, Vivienne P. et al. (2022), Climate change, land cover change, and overharvesting threaten a widely used medicinal plant in <scp>S</scp>outh <scp>A</scp>frica, Ecological Applications, Journal-article, https://doi.org/10.1002/eap.2545
- Spiegel, Marcus P. et al. (2023), Top‐Down Regulation by a Reindeer Herding System Limits Climate‐Driven Arctic Vegetation Change at a Regional Scale, Earth's Future, Journal-article, https://doi.org/10.1029/2022ef003407
- Hausharter, Johannes et al. (2023), Niche breadth explains the range size of European‐centred butterflies, but dispersal ability does not, Global Ecology and Biogeography, Journal-article, https://doi.org/10.1111/geb.13717
- van der Hoek, Yntze et al. (2023), Observations on the effects of fire on East African Afroalpine vegetation, African Journal of Ecology, Journal-article, https://doi.org/10.1111/aje.13155
- Jentsch, Helge; Weidinger, Johannes; Bobrowski, Maria (2023), ClimDatDownloadR: Downloads Climate Data from Chelsa and WorldClim, , Book, https://doi.org/10.5281/zenodo.7924342
- Leandro, Camila et al. (2023), Dung beetle community patterns in Western Europe: responses of Scarabaeinae to landscape and environmental filtering, Landscape Ecology, Journal-article, https://doi.org/10.1007/s10980-023-01711-0
- Pinkert, Stefan; Sica, Yanina V.; Winner, Kevin; Jetz, Walter (2023), The potential of ecoregional range maps for boosting taxonomic coverage in ecology and conservation, Ecography, Journal-article, https://doi.org/10.1111/ecog.06794
- Jentsch, Helge; Weidinger, Johannes; Bobrowski, Maria (2023), ClimDatDownloadR: Downloads Climate Data from Chelsa and WorldClim, , Book, https://doi.org/10.5281/zenodo.8319614
- Atsawawaranunt, Kamolphat et al. (2024), Projecting the current and potential future distribution of New Zealand’s invasive sturnids, Biological Invasions, Journal-article, https://doi.org/10.1007/s10530-024-03246-0
- Bureš, Petr et al. (2024), The global distribution of angiosperm genome size is shaped by climate, New Phytologist, Journal-article, https://doi.org/10.1111/nph.19544
- Ghosh, Shyamolina; Matthews, Blake; Petchey, Owen L. (2024), Temperature and biodiversity influence community stability differently in birds and fishes, Nature Ecology & Evolution, Journal-article, https://doi.org/10.1038/s41559-024-02493-7
- Dagnino, Davide et al. (2020), Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk, Regional Environmental Change, Journal-article, https://doi.org/10.1007/s10113-020-01708-4
- Berman, Laura Marie; Schneider, Fabian D; Pavlick, Ryan P. et al. (2024). Fractional Richness: An index for camera trap networks. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2024.112266
- Konowalik, Kamil (2022). Phylogeography and colonization pattern of subendemic round-leaved oxeye daisy from the Dinarides to the Carpathians. Scientific Reports. https://doi.org/10.1038/s41598-022-19619-1
- Cárate Tandalla, Daisy; Homeier, Jürgen; Batáry, Péter (2024). Responses of Tropical Tree Seedlings to Nutrient Addition: A Meta-analysis to understand future changes in Tropical Forest Dynamics. Current Forestry Reports. https://doi.org/10.1007/s40725-024-00240-6
- Hähn, Georg J. A.; Damasceno, Gabriella; Alvarez-Davila, Esteban et al. (2024). Global decoupling of functional and phylogenetic diversity in plant communities. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-024-02589-0
- Midolo, Gabriele; Skokanová, Hana; Clark, Adam Thomas et al. (2025). Nineteenth-century land use shapes the current occurrence of some plant species, but weakly affects the richness and total composition of Central European grasslands. Landscape Ecology. https://doi.org/10.1007/s10980-024-02016-6
- Dussert, Yann; Borrell, James S.; Stocks, Jonathan et al. (2025). Recurrent evolution of cryptic triploids in cultivated enset increases yield [Preprint]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.02.14.638218
- Ormond, Amaris; Ellis, Christopher J.; Colesie, Claudia (2025). The trade-off between photosynthetic rate and thallus moisture-demand explains lichen habitat association with the temperate rainforest. Oecologia. https://doi.org/10.1007/s00442-025-05687-3
- Pärtel, Meelis; Tamme, Riin; Carmona, Carlos P. et al. (2025). Global impoverishment of natural vegetation revealed by dark diversity. Nature. https://doi.org/10.1038/s41586-025-08814-5
- Jentsch, Helge; Weidinger, Johannes; Bobrowski, Maria (2025). ClimDatDownloadR: Downloads Climate Data from Chelsa and WorldClim. Zenodo. https://doi.org/10.5281/zenodo.15663185
- Yeşilyurt, Serdar (2025). The role of Little Ice Age glaciation in shaping the rock glacier morphology of Mount Kaçkar, Türkiye. Mediterranean Geoscience Reviews. https://doi.org/10.1007/s42990-025-00160-y
- Malchow, Anne-Kathleen; Fandos, Guillermo; Kormann, Urs G. et al. (2022). Fitting individual-based models of spatial population dynamics to long-term monitoring data [Preprint]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.09.26.509574
- Konowalik, Kamil; Łuczak, Olga (2025). From Genes to Shapes: Exploring Local Adaptation in Carpathian Ox‐Eye Daisies. Journal of Biogeography. https://doi.org/10.1111/jbi.15158
- O’Beirne, Molly D.; Vornlocher, Jamie R.; Lopera‐Congote, Laura et al. (2025). Exploring the Influence of Temperature on brGDGT Distributions in Chilean Lakes and Soils: A Comparative Analysis of In Situ Measured and Modeled Temperature Data. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2024jg008506
- Díaz‐Borrego, Raquel; Lloret, Francisco; Jaime, Luciana et al. (2025). Climatic resilience after extreme drought in Mediterranean shrubland plant communities. Ecography. https://doi.org/10.1002/ecog.07835
- Holle, Valén; Rönnfeldt, Anna; Schifferle, Katrin et al. (2024). Uncertainty in blacklisting potential Pacific plant invaders using species distribution models [Preprint]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.12.11.627501
- Schüßler, Dominik; van Elst, Tobias; Rabemananjara, Naina R. et al. (2025). Ecological plasticity explains the distribution of sympatric and allopatric mouse lemurs ( Microcebus spp.) in northeastern Madagascar [Preprint]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.03.24.645043
- Waldron, Brian P; Bolte, Megan E; Kuchta, Shawn R (2025). Does macrohabitat differentiation explain patterns of allopatry and sympatry in widely distributed woodland salamanders (Plethodon)?. Biological Journal of the Linnean Society. https://doi.org/10.1093/biolinnean/blaf042
- Baril, Tobias; Puccetti, Guido; Croll, Daniel (2025). Historic transposon mobilisation waves create distinct pools of adaptive variants in a major crop pathogen [Preprint]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.04.02.646807
- Gür, Mutlu Kart; KANKILIÇ, Tolga; GÜR, Hakan (2025). Geographic Variation in the Bioclimatic Niche, Hibernation, and Body Size of Anatolian Ground Squirrels [Preprint]. Springer Science and Business Media LLC. https://doi.org/10.21203/rs.3.rs-6474074/v1
-
Westcott, Jacob R.; Bowden, Joseph J.; Savage, Jade; Doody, Karen M. (2025). Rapid Northward Expansion of the Blacklegged Tick,
Ixodes scapularis , in Response to Climate Change. Global Change Biology. https://doi.org/10.1111/gcb.70591 - Baril, Tobias; Puccetti, Guido; Croll, Daniel (2025). Historic transposon mobilisation waves create distinct pools of adaptive variants in a major crop pathogen. Nature Communications. https://doi.org/10.1038/s41467-025-64944-4
-
Brundu, G.; Follak, S.; Pergl, J. et al. (2025). Risk prioritization of bamboo species in the
EPPO region. EPPO Bulletin. https://doi.org/10.1111/epp.13073 - Zare Shahraki, Mojgan; Fathi, Pejman; Domisch, Sami et al. (2025). Evaluating Environmental Predictors of Fish Community Composition in a Semi‐Arid River System Using a Model‐Based Approach. Ecology of Freshwater Fish. https://doi.org/10.1111/eff.70013
- Mugnai, Michele; Di Nuzzo, Luca; Beltramini, Andrea et al. (2025). Interactions among vascular plants, bryophytes, and lichens in grassland communities along elevational gradients. The Science of Nature. https://doi.org/10.1007/s00114-025-02049-0
- Li, (2025). Climate change sensitivity [Dataset]. figshare. https://doi.org/10.6084/m9.figshare.30910928.v1
- Li, (2025). Climate change sensitivity [Dataset]. figshare. https://doi.org/10.6084/m9.figshare.30910928
- Cheesman, A. W.; Cernusak, L. A. (2025). Susceptibility of tropical trees to drought: Context across scales. Plant Biology. https://doi.org/10.1111/plb.70156
- Green, Abigail E.; Calderón-Acevedo, Camilo A.; Soto-Centeno, J. Angel; Pelletier, Tara A. (2025). Environmental and geographic drivers of global bat phylogenetic diversity [Preprint]. openRxiv. https://doi.org/10.1101/2025.02.18.636314
- Rönnfeldt, Anna; Holle, Valén; Schifferle, Katrin et al. (2025). Climatic niche conservatism in non-native plants depends on introduction history and biogeographic context [Preprint]. openRxiv. https://doi.org/10.1101/2025.01.28.635214
- Verbiest, William W. M.; Smith, Gabriel Reuben; Mirzagholi, Leila et al. (2023). Enhanced local cooling effects of forests across the globe [Preprint]. openRxiv. https://doi.org/10.1101/2023.10.17.562656
