Skip to main content
Dryad

Plasticity and artificial selection for developmental mode in a poecilogonous sea slug

Data files

Sep 13, 2022 version files 541.96 KB

Abstract

The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slug Alderia willowi exhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk-feeding (lecithotrophic) larvae during the summer, and more planktonic-feeding (planktotrophic) larvae in the winter. I found significant family level variation in the reaction norms between 17 maternal families of A. willowi when reared in a split-brood design in low (16 ppt) versus high (32 ppt) salinity; conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the lab, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg-mass type in A. willowi, but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.