Skip to main content
Dryad

Data from: Architectural constraints, male fertility variation and biased floral morph ratios in tristylous populations

Data files

May 16, 2019 version files 71.46 KB

Click names to download individual files

Abstract

Tristyly is a genetic polymorphism in which populations are comprised of three floral morphs (mating types) differing reciprocally in sex-organ height. Intermorph (disassortative) mating governed by a trimorphic incompatibility system should result in 1:1:1 morph ratio at equilibrium, but both deterministic and stochastic processes can cause skewed morph ratios in tristylous populations. Here, we investigate mechanisms causing morph-ratio bias in Pontederia parviflora, an emergent aquatic native to tropical America. We compared reproductive traits among morphs and surveyed 71 populations to determine patterns of morph-ratio bias. We then used simulation models of morph-frequency dynamics to test the hypothesis that morph-specific differences in pollen production and their influence on male fertility can explain patterns of morph-ratio bias. Ninety-seven percent of populations that we sampled were tristylous, but with a significant excess of the short-styled morph and a deficiency of the long-styled morph. Atypically for a tristylous species, mid-level anthers of the short-styled morph produced over twice as much pollen compared with the corresponding anthers of the long-styled morph. Our computer models incorporating this difference in male fertility resulted in morph ratios not significantly different from the average frequencies from our survey suggesting that the short-styled morph is more successful than the long-styled morphs in siring ovules of the mid-styled morph. We propose that the difference in male fertility between morphs may be a non-adaptive consequence of a developmental constraint caused by the architecture of tristyly in Pontederiaceae.