Skip to main content
Dryad

Data from: Flat-band localization and interaction-induced delocalization of photons

Data files

Sep 02, 2024 version files 1.36 MB

Abstract

Lattices with dispersionless, or flat, energy bands have attracted significant interest in part due to the strong dependence of particle dynamics on interactions. Using superconducting circuits, we experimentally study the dynamics of one and two particles in a single plaquette of a lattice whose band structure consists entirely of flat bands. We first observe strictly localized dynamics of a single particle, the hallmark of all-bands-flat physics. Upon initializing two particles on the same site, we see an interaction-enabled delocalized walk across the plaquette. We further find localization in Fock space for two particles initialized on opposite sides of the plaquette. These results mark the first experimental observation of a quantum walk that becomes delocalized due to interactions and establishes a key building block in superconducting circuits for studying flat-band dynamics with strong interactions.