Data from: Effects of Cs on temperature response of C. borealis pyloric rhythm
Data files
Apr 23, 2024 version files 4.50 GB
-
965_106_SpikeAndTemp.mat
-
969_058_SpikeAndTemp.mat
-
969_062_SpikeAndTemp.mat
-
969_065_SpikeAndTemp.mat
-
969_068_SpikeAndTemp.mat
-
969_070_SpikeAndTemp.mat
-
969_083_SpikeAndTemp.mat
-
969_085_SpikeAndTemp.mat
-
969_087_SpikeAndTemp.mat
-
969_088_SpikeAndTemp.mat
-
969_089_SpikeAndTemp.mat
-
969_091_SpikeAndTemp.mat
-
969_106_SpikeAndTemp.mat
-
969_113_SpikeAndTemp.mat
-
969_115_SpikeAndTemp.mat
-
969_128_SpikeAndTemp.mat
-
969_135_SpikeAndTemp.mat
-
969_147_SpikeAndTemp.mat
-
969_150_SpikeAndTemp.mat
-
969_152_SpikeAndTemp.mat
-
969_154_SpikeAndTemp.mat
-
981_010_SpikeAndTemp.mat
-
981_025_SpikeAndTemp.mat
-
981_035_SpikeAndTemp.mat
-
CalculateFrequencyPhaseEtc.m
-
extractBurstFrequency_Final.m
-
LPAdvanceSamePeriod.mat
-
MakePaperFigures_Clean.m
-
Phase_Calc.m
-
plot_trace_examples_EC3.m
-
plot_trace_examples_ext_1trace.m
-
plot_trace_examples_ext_TwoCol.m
-
plot_trace_examples_IC_EC.m
-
plot_trace_examples_Temp.m
-
ProbabilityUpDown.m
-
Raw_Expt_969_087.mat
-
Raw_Expt_969_113.mat
-
Raw_Expt_969_115.mat
-
Raw_Expt_969_137.mat
-
Raw_Expt_969_147.mat
-
Raw_Expt_981_007.mat
-
Raw_Expt_981_037.mat
-
README.md
-
Sawtooth.mat
-
SawtoothPTX.mat
-
subtightplot.m
-
SummaryStatistics.mat
-
SummaryStatisticsPTX.mat
-
VoltageClampData.mat
Aug 09, 2024 version files 3.81 GB
-
965_106_SpikeAndTemp.mat
-
969_058_SpikeAndTemp.mat
-
969_062_SpikeAndTemp.mat
-
969_065_SpikeAndTemp.mat
-
969_068_SpikeAndTemp.mat
-
969_070_SpikeAndTemp.mat
-
969_083_SpikeAndTemp.mat
-
969_085_SpikeAndTemp.mat
-
969_087_SpikeAndTemp.mat
-
969_088_SpikeAndTemp.mat
-
969_089_SpikeAndTemp.mat
-
969_091_SpikeAndTemp.mat
-
969_106_SpikeAndTemp.mat
-
969_113_SpikeAndTemp.mat
-
969_115_SpikeAndTemp.mat
-
969_128_SpikeAndTemp.mat
-
969_135_SpikeAndTemp.mat
-
969_147_SpikeAndTemp.mat
-
969_150_SpikeAndTemp.mat
-
969_152_SpikeAndTemp.mat
-
969_154_SpikeAndTemp.mat
-
981_010_SpikeAndTemp.mat
-
981_025_SpikeAndTemp.mat
-
981_035_SpikeAndTemp.mat
-
CalculateFrequencyPhaseEtc.m
-
extractBurstFrequency_Final.m
-
LPAdvanceSamePeriod.mat
-
MakePaperFigures_Clean.m
-
Phase_Calc.m
-
plot_trace_examples_EC3.m
-
plot_trace_examples_ext_1trace.m
-
plot_trace_examples_ext_TwoCol.m
-
plot_trace_examples_IC_EC.m
-
plot_trace_examples_Temp.m
-
ProbabilityUpDown.m
-
Raw_Expt_969_087.mat
-
Raw_Expt_969_113.mat
-
Raw_Expt_969_115.mat
-
Raw_Expt_969_137.mat
-
Raw_Expt_969_147.mat
-
Raw_Expt_981_007.mat
-
Raw_Expt_981_037.mat
-
README.md
-
Sawtooth.mat
-
SawtoothPTX.mat
-
subtightplot.m
-
SummaryStatistics.mat
-
SummaryStatisticsPTX.mat
-
VoltageClampData.mat
-
VoltageClampTraceData.mat
Abstract
Motor systems operate over a range of frequencies and relative timing (phase). We studied the contribution of the hyperpolarization-activated inward current (Ih) to frequency and phase in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis as temperature was altered from 11°C to 21°C. Under control conditions, the frequency of the rhythm increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. When we blocked Ih with cesium (Cs+) PD offset, LP onset, and LP offset were all phase advanced in Cs+ at 11°C, and the latter two further advanced as temperature increased. In Cs+ the steady state increase in pyloric frequency with temperature diminished and the Q10 of the pyloric frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency displayed non-monotonic dynamics during temperature transitions; the frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic “jag”. Interestingly, these jags were still present during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in the ability of this circuit to produce smooth transitory responses and persistent frequency increases by different mechanisms during temperature fluctuations.
Methods
The data consist largely of the spike times for various pyloric neurons recorded extra or intracellularly. These data were used to calculate feartures like frequency of the rhythm and phase of the components under various conditions.