Skip to main content
Dryad

Data from: An assessment of the immune costs associated with meiotic drive chromosomes in Drosophila

Data files

Aug 30, 2019 version files 5.51 KB

Abstract

Most organisms are constantly adapting to pathogens and parasites that exploit their host for their own benefit. Less studied, but perhaps more ubiquitous, are intragenomic parasites or selfish genetic elements. These include transposable elements, selfish B chromosomes and meiotic drivers that promote their own replication without regard to fitness effects on hosts. Therefore, intragenomic parasites are also a constant evolutionary pressure on hosts. Gamete-killing meiotic drive elements are often associated with large chromosomal inversions that reduce recombination between the drive and wildtype chromosomes. This reduced recombination is thought to reduce the efficacy of selection on the drive chromosome and allow for the accumulation of deleterious mutations. We tested whether gamete-killing meiotic drive chromosomes were associated with reduced immune defense against two bacterial pathogens in three species of Drosophila. We found little evidence of reduced immune defense in lines with meiotic drive. One line carrying the Drosophila melanogaster autosomal Segregation Distorter did show reduced defense, but we were unable to attribute that reduced defense to either genotype or immune gene expression differences. Our results suggest that though gamete-killing meiotic drive chromosomes likely accumulate deleterious mutations, those mutations do not result in reduced capacity for immune defense.