Dryad logo

Data from: Differential neural processing during motor imagery of daily activities in chronic low back pain patients

Citation

Vrana, Andrea et al. (2016), Data from: Differential neural processing during motor imagery of daily activities in chronic low back pain patients, Dryad, Dataset, https://doi.org/10.5061/dryad.2h0q3

Abstract

Chronic low back pain (chronic LBP) is both debilitating for patients but also a major burden on the health care system. Previous studies reported various maladaptive structural and functional changes among chronic LBP patients on spine- and supraspinal levels including behavioral alterations. However, evidence for cortical reorganization in the sensorimotor system of chronic LBP patients is scarce. Motor Imagery (MI) is suitable for investigating the cortical sensorimotor network as it serves as a proxy for motor execution. Our aim was to investigate differential MI-driven cortical processing in chronic LBP compared to healthy controls (HC) by means of functional magnetic resonance imaging (fMRI). Twenty-nine subjects (15 chronic LBP patients, 14 HC) were included in the current study. MI stimuli consisted of randomly presented video clips showing every-day activities involving different whole-body movements as well as walking on even ground and walking downstairs and upstairs. Guided by the video clips, subjects had to perform MI of these activities, subsequently rating the vividness of their MI performance. Brain activity analysis revealed that chronic LBP patients exhibited significantly reduced activity compared to HC subjects in MI-related brain regions, namely the left supplementary motor area and right superior temporal sulcus. Furthermore, psycho-physiological-interaction analysis yielded significantly enhanced functional connectivity (FC) between various MI-associated brain regions in chronic LBP patients indicating diffuse and non-specific changes in FC. Current results demonstrate initial findings about differences in MI-driven cortical processing in chronic LBP pointing towards reorganization processes in the sensorimotor network.

Usage Notes

References