Skip to main content
Dryad

Data from: a physics-based digital twin for model predictive control of autonomous unmanned aerial vehicle landing

Data files

May 09, 2022 version files 460.72 MB

Click names to download individual files

Abstract

This paper proposes a two-level, data-driven, digital twin concept for the autonomous landing of aircraft, under some assumptions. It features a digital twin instance for model predictive control; and an innovative, real-time, digital twin prototype for fluid-structure interaction and flight dynamics to inform it. The latter digital twin is based on the linearization about a pre-designed glideslope trajectory of a high-fidelity, viscous, nonlinear computational model for flight dynamics; and its projection onto a low-dimensional approximation subspace to achieve real-time performance, while maintaining accuracy. Its main purpose is to predict in real-time, during flight, the state of an aircraft and the aerodynamic forces and moments acting on it. Unlike static lookup tables or regression-based surrogate models based on steady-state wind tunnel data, the aforementioned real-time digital twin prototype allows the digital twin instance for model predictive control to be informed by a truly dynamic flight model, rather than a less accurate set of steady-state aerodynamic force and moment data points. The paper describes in detail the construction of the proposed two-level digital twin concept and its verification by numerical simulation. It also reports on its preliminary flight validation in autonomous mode for an off-the-shelf unmanned aerial vehicle instrumented at Stanford University.