Skip to main content
Dryad

The macroecology of fish migration

Data files

Oct 29, 2020 version files 58.75 MB

Abstract

Aim: We still lack a consensus on the main variables driving changes in migratory strategies. Different hypotheses have been proposed: productivity, energy, environmental heterogeneity, and genetic predisposition. This work takes an integrative view and analyzes migrations from a macroecological perspective estimating the extent to which different environmental variables and historic factors influence migratory life histories.

Location: Global

Time period: Current

Major taxa studied: Actinopterygian fishes

Methods: Using public domain museum records, global repositories, and global measures of temperature, productivity, precipitation and heterogeneity, we spatially analyzed the distribution of anadromous, catadromous, amphidromous, potamodromous and oceanodromous migratory fish using 1676 species and compared it to 1616 non-migratory fishes. After analyzing the individual roles of productivity and temperature in shaping biodiversity, we conducted path analyses including several environmental variables and principal coordinates of phylogenetic structure (PCPS).

Results: The different migratory strategies are not evenly distributed around the globe and phylogeny is a relevant variable in shaping current patterns. Productivity is positively related to species richness, except for anadromy and potamodromy, where we observed a unimodal curve. Temperature significantly drives migratory species richness (except for anadromy). The role of environmental heterogeneity, measured as temperature seasonality and annual range is strongest for anadromous species, which helps explain their skewed distribution towards higher latitudes and why the kinetic-energy hypothesis fails in explaining their richness patterns.

Main conclusions: Overall, migratory fish richness can be explained by the interaction of multiple variables, such as productivity, temperature, environmental heterogeneity, and the role of phylogeny, but these variables interact differentially in each strategy, diverging mostly for the anomalous anadromous fishes. Integrating these results into a global framework to better understand the evolutionary and ecological dynamics of migration will help with predicting responses to anthropogenic climate change