Data from: Rapid divergence of predator functional traits affects prey composition in aquatic communities
Data files
Nov 02, 2018 version files 75.74 KB
Abstract
Identifying traits that underlie variation in individual performance of consumers (i.e. trait utility) can help reveal the ecological causes of population divergence, and the subsequent consequences for species interactions and community structure. Here, we document a case of rapid divergence (over the past 100 generations or ~150 years) in foraging traits and feeding efficiency between a lake and stream population pair of threespine stickleback. Building on predictions from functional trait models of fish feeding, we analyzed foraging experiments with a Bayesian path analysis and elucidated the traits explaining variation in foraging performance and the species composition of ingested prey. Despite extensive previous research on the divergence of foraging traits among populations and ecotypes of stickleback, our results provide novel experimental evidence of trait utility for jaw protrusion, gill raker length, and gill raker spacing when foraging on a natural zooplankton
assemblage. Furthermore, we discuss how these traits might contribute to the differential effects of lake and stream stickleback on their prey communities, observed in both laboratory and mesocosm conditions. More generally, our results illustrate how the rapid divergence of functional foraging traits of consumers can impact the biomass, species composition, and trophic structure of prey communities.