Skip to main content
Dryad

Experimental addition of marine-derived nutrients affects wildflower traits in a coastal meta-ecosystem

Cite this dataset

Dennert, Allison; Elle, Elizabeth; Reynolds, John (2022). Experimental addition of marine-derived nutrients affects wildflower traits in a coastal meta-ecosystem [Dataset]. Dryad. https://doi.org/10.5061/dryad.905qfttnt

Abstract

Organismal movement can bring individuals, resources, and novel interactions across ecosystem boundaries and into recipient habitats, thereby forming meta-ecosystems. For example, Pacific salmon ecosystems receive large marine-derived nitrogen subsidies during annual spawning events, which can have a wide range of effects on aquatic and terrestrial plant species and communities. In this study, we evaluate the effects of cross-ecosystem nutrient subsidies on terrestrial plant growth and reproduction. We conducted a large-scale field experiment with four treatments: (1) addition of a pink salmon (Oncorhynchus gorbuscha) carcass, (2) addition of the drift seaweed rockweed (Fucus distichus), (3) addition of both salmon + rockweed, and (4) a control. We examined treatment effects on leaf nitrogen and fitness-associated floral traits in four common estuarine wildflower species. We found elevated leaf ∂15N in all plant species and all sampling years in treatments with salmon carcass additions but did not observe any differences in leaf percent nitrogen. We also observed larger leaf area in two species, a context-dependent increase in floral display area in two species, and a limited increase in plant seed set in response to both salmon carcass treatments. In sum, our study suggests that marine nutrients can affect terrestrial plant growth and reproduction.

Funding

Natural Sciences and Engineering Research Council