Skip to main content
Dryad

Data from: Transcriptomic response to injury sheds light on the physiological costs of reproduction in ant queens

Data files

Feb 09, 2016 version files 19.04 MB

Abstract

The trade-off between reproduction and longevity is widespread among multicellular organisms. As an important exception, the reproductive females of perennial social insects (ants, honeybees, termites) are simultaneously highly fertile and very long-lived relative to their nonreproductive nestmates. The observation that increased fecundity is not coupled with decreased lifespan suggests that social insect queens do not have to reallocate resources between reproduction and self-maintenance. If queens have to compensate for the costs of reproduction on the level of the individual, the activation of other energy-demanding physiological processes might force them to reduce the production of eggs. To test this hypothesis in ant queens, we increased immunity costs by injury and measured the effect of this treatment on egg-laying rates and genomewide gene expression. Amputation of both middle legs led to a temporary decrease in egg-laying rates and affected the expression of 947 genes corresponding to 9% of the transcriptome. The changes comprised the upregulation of the immune and wound healing response on the one hand, and the downregulation of germ cell development, central nervous system development and learning ability on the other hand. Injury strongly influenced metabolism by inducing catabolism and repressing amino acid and nitrogen compound metabolism. By comparing our results to similar transcriptomic studies in insects, we found a highly consistent upregulation of immune genes due to sterile and septic wounding. The gene expression changes, complemented by the temporary decline of egg-laying rates, clearly reveal a trade-off between reproduction and the immune response in social insect queens.