Data from: Morphological convergence of the prey-killing arsenal of sabertooth predators
Data files
Jun 24, 2011 version files 50.51 KB
Abstract
Sabertooth members of the Felidae, Nimravidae, and Barbourofelidae are well-known for their elongated saber-shaped canines. However, within these groups, there is a wide range of independently derived tooth shapes and lengths, including dirk-tooth and scimitar-tooth morphs. In conjunction with the saberteeth, forelimbs were also used to subdue prey. Thus, there may be a functional link between canine shape and forelimb morphology. Because there are no living sabertooth forms for comparison, extant felids make a good proxy for examining the morphology of these extinct organisms. Here, I examine the forelimb morphology of different sabertooth groups from across North America; I address whether forelimb morphologies are associated with tooth morphologies, and whether these associated tooth and forelimb morphologies are convergent among different families. To answer these questions, I analyzed six functional indices of the forelimbs and two canine characters for 13 species of sabertooth predators and 15 extant felid species. Results indicate that sabertooth morphs with longer, thinner canines show more robust limb proportions. These patterns were convergent among sabertooth felids, nimravids, and barbourofelids, and indicate a positive functional relationship between saber elongation and increased forelimb robustness. This suggests that sabertooth carnivorans demonstrated niche partitioning of predation strategies according to canine shape and corresponding forelimb morphology.