Skip to main content
Dryad logo

Data from: Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster


Griffin, Robert M.; Le Gall, Damien; Schielzeth, Holger; Friberg, Urban (2015), Data from: Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster, Dryad, Dataset,


The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species’ Y chromosome contains only 13 protein coding genes, is almost entirely heterochromatic, and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, ii) is influenced by many genes, which provides the Y with many potential regulatory targets, and iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome, and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome.

Usage Notes