Skip to main content
Dryad

Data for: Predation and biophysical context control long-term carcass nutrient inputs in an Andean ecosystem

Data files

Dec 19, 2023 version files 85.83 KB

Abstract

Animal carcass decomposition is an often-overlooked component of nutrient cycles. The importance of carcass decomposition for increasing nutrient availability has been demonstrated in several ecosystems, but impacts in arid lands are poorly understood. In a protected high desert landscape in Argentina, puma predation of vicuñas is a main driver of carcass distribution. Here, we sampled puma kill sites across three habitats (plains, canyons, and meadows) to evaluate the impacts of vicuña carcass and stomach decomposition on soil and plant nutrients up to 5 years after carcass deposition. Soil beneath both carcasses and stomachs had significantly higher soil nutrient content than adjacent reference sites in arid, nutrient-poor plains and canyons, but not in moist, nutrient-rich meadows. Stomachs had greater effects on soil nutrients than carcasses. However, we did detect higher plant N concentrations at kill sites. The biogeochemical effects of puma kills persisted for several years and increased over time, indicating that kills do not create ephemeral nutrient pulses, but can have lasting effects on the distribution of soil nutrients. Comparison to broader spatial patterns of predation risk reveals that puma predation of vicuñas is more likely in nutrient-rich sites, but carcasses have the greatest effects on soil nutrients in nutrient-poor environments, such that carcasses increase localized heterogeneity by generating nutrient hotspots in less productive environments. Predation and carcass decomposition may thus be important overlooked factors influencing ecosystem functioning in arid environments.