Skip to main content
Dryad logo

Data from: A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells

Citation

Goicoechea, Silvia M. et al. (2017), Data from: A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells, Dryad, Dataset, https://doi.org/10.5061/dryad.q1j50

Abstract

One of the hallmarks of cancer is the ability of tumor cells to invade surrounding tissues and metastasize. During metastasis, cancer cells degrade the extracellular matrix, which acts as a physical barrier, by developing a specialized actin-rich membrane protrusion structure called invadopodia. The formation of invadopodia is regulated by Rho GTPases, a family of proteins that regulates the actin cytoskeleton. Here, we describe a novel role for RhoG in the regulation of invadopodia disassembly in human breast cancer cells. Our results show that RhoG and Rac1 have independent and opposite roles in the regulation of invadopodia dynamics. We also show that SGEF is the exchange factor responsible for the activation of RhoG during invadopodia disassembly. When the expression of either RhoG or SGEF is silenced, invadopodia are more stable and have a longer lifetime than in control cells. Our findings also demonstrate that RhoG and SGEF modulate the phosphorylation of paxillin, which plays a key role during invadopodia disassembly. In summary, we have identified a novel signaling pathway involving SGEF, RhoG, and paxillin phosphorylation, which functions in the regulation of invadopodia disassembly in breast cancer cells.

Usage Notes

Location

United States