Skip to main content
Dryad logo

Data from: Formin is associated with left-right asymmetry in the pond snail and the frog

Citation

Davison, Angus et al. (2017), Data from: Formin is associated with left-right asymmetry in the pond snail and the frog, Dryad, Dataset, https://doi.org/10.5061/dryad.r4342

Abstract

While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models, we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro, together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements.

Usage Notes