Data from: Genetic evidence for prevalence of alloparental care in a socially monogamous biparental cichlid fish, Perissodus microlepis, from Lake Tanganyika supports the "selfish shepherd effect" hypothesis
Data files
Mar 14, 2017 version files 40.62 KB
Abstract
Alloparental care – care for unrelated young – is rare in animals, and its ecological or evolutionary advantages or, alternative maladaptive nature, remain unclear. We investigate alloparental care in the socially monogamous cichlid fish Perissodus microlepis from Lake Tanganyika that exhibits bi-parental care. In a genetic parentage analysis, we discovered a surprisingly high percentage of alloparental care represented by brood mixing, extra-pair paternity and extra-pair maternity in all broods that we investigated. The percentage of nondescendant juveniles of other parents, i.e., brood mixing, ranged from 5% to 57% (mean = 28%). The distribution of genetic parentage also suggests that this socially monogamous species has, in fact, polygamous mating system. The prevalence of genetically mixed broods can be best explained by two, not mutually exclusive hypotheses on farming-out and fostering behaviors. In the majority of broods, the sizes of the parents’ own (descendant) offspring were significantly larger than those of the adopted (nondescendant) juveniles, supporting the ‘selfish shepherd effect’ hypothesis, i.e., that foster parents preferentially accept unrelated “smaller or not larger” young since this would tend to lower the predation risks for their own larger offspring. There was also a tendency for larger parents particularly mothers, more so than smaller parents, to care predominantly for their own offspring. Larger parents might be better at defending against cuckoldry and having foreign young dumped into their broods through farming-out behavior. This result might argue for maladaptive effects of allopatric care for the foster parents that only larger and possibly more experienced pairs can guard against. It needs to be determined why, apparently, the ability to recognize one's own young has not evolved in this species.