Skip to main content
Dryad

Genotyping-by-sequencing Single-nucleotide Polymorphism Dataset for Corynorhinus rafinesquii (CORA) and Myotis austroriparius (MYAU)

Abstract

Understanding underlying genetic structure is essential for the conservation and management of rare or uncommon species because it is important to protect their evolutionary potential and adaptability by preserving genetic diversity. Southeastern Myotis (Myotis austroriparius or MYAU) is an uncommon bat species that ranges across much of the southeastern United States. At the state level, MYAU is regarded as endangered or a Species of Greatest Conservation Need across nearly all its distribution. The overall objective of this study was to examine the genetic structure and genetic diversity of MYAU by determining levels of subpopulation connectivity across its range. We collected, sequenced, and analyzed tissue samples from 376 individuals from 38 sites, 11 states, and 8 ecoregions using genotyping-by-sequencing (GBS). We used Sanger sequencing to sequence a portion of the mtDNA control region from 472 tissue samples from 42 sites, 12 states, and 8 ecoregions. GBS results indicated that MYAU has a single, panmictic population with little genetic structure and should be managed as so. Results from mtDNA indicated higher levels of genetic structure, likely due to low effective population size, some level of sex-biased dispersal, and increased mutation rates, but not enough to consider separate management units or clades. Genetic diversity estimates were low to moderate. Results from this study can be used to infer and improve long-term protection and management protocols for MYAU. Researchers and managers should preserve gene flow and ensure subpopulations remain connected by maintaining forest corridors and protecting natural and artificial roosts for MYAU in order to prevent future population segregation.