Skip to main content
Dryad

Hotter deserts and the impending challenges for the spiny-tailed lizard in India

Data files

Mar 18, 2024 version files 5.49 MB

Abstract

Ectotherms are particularly vulnerable to climate change, especially those living in extreme areas, such as deserts, where species are already thermally constrained. Using the vulnerable herbivorous lizard, Saara hardwickii, as a model system, we used a multi-pronged approach to understand the thermal ecology of a desert agamid and the potential impacts of rising temperatures. Our data included field-based measures of operative temperatures, body temperatures, and activity, as well as lab-based measures of thermal limits, preferences, and sprint speed. As expected, the temperature dependence of locomotor performance and foraging activity was different, and in the worst-case global warming scenario (SSP5-8.5), potential sprint speed may decrease by up to 14.5% and foraging activity may decrease by up to 43.5% by 2099. Burrows are essential thermal refuges, and global warming projections suggest that S. hardwickii may be restricted to burrows for up to 9 hours per day by 2099, which would greatly limit critical activities, like foraging and seeking mating opportunities. Overall, we show that key information on thermal ecology, including temperature-sensitive behaviours in the wild, is necessary to understand the multiple ways in which increasing temperatures may influence ectothermic vertebrates, especially for species like S. hardwickii which are already vulnerable to environmental change.