Skip to main content
Dryad

Sexual signals persist over deep time: ancient co-option of bioluminescence for courtship displays in cypridinid ostracods

Data files

Abstract

Although the diversity, beauty, and intricacy of sexually selected courtship displays command the attention of evolutionists, the longevity of these traits in deep time is poorly understood. Population-based theory suggests sexual selection could either lower or raise extinction risk, resulting in high or low persistence of lineages with sexually selected traits. Furthermore, empirical studies that directly estimate longevity of sexually selected traits are uncommon. Sexually selected signals - including bioluminescent courtship - originated multiple times during evolution, allowing empirical study of their longevity after careful phylogenetic and divergence time analyses. Here, we estimate the first transcriptome-based molecular phylogeny and divergence times of Cypridinidae. We report extreme longevity of bioluminescent courtship, a trait important in mate choice and probably under sexual selection. Our relaxed-clock estimates of divergence times coupled with stochastic character mapping show luminous courtship evolved only once in Cypridinidae in a subtribe we name Luxorina at least 151 million years ago (mya) from cypridinid ancestors that used bioluminescence only in anti-predator displays, defining a tribe we name Luminini. This time-calibrated molecular phylogeny of cypridinids will serve as a foundation for integrative and comparative studies on the biochemistry, molecular evolution, courtship, diversification, and ecology of cypridinid bioluminescence. The persistence of luminous courtship for hundreds of millions of years indicates that rates of speciation within the group exceeded extinction risk, allowing for the persistence of a diverse clade of signalling species and that sexual selection did not cause rapid loss of associated traits.