Skip to main content
Dryad

In transition: avian biogeographic responses to a century of climate change across desert biomes

Data files

Feb 10, 2020 version files 31.47 KB

Abstract

Transition zones between biomes, also known as ecotones, are areas of pronounced ecological change. They are primarily maintained by abiotic factors and disturbance regimes that could hinder or promote species range shifts in response to climate change. We evaluated how climate change has affected metacommunity dynamics in two adjacent biomes and across their ecotone by resurveying 106 sites that were originally surveyed for avian diversity in the early 20th century by Joseph Grinnell and colleagues. The Mojave, a warm desert, and the Great Basin, a cold desert, have distinct assemblages and meet along a contiguous, east-west boundary. Both deserts substantially warmed over the past century, but the Mojave dried while the Great Basin became wetter. We examined whether the distinctiveness and composition of desert avifaunas have changed, if species distributions shifted, and how the transition zone impacted turnover patterns. Avifauna change was characterized by (a) reduced occupancy, range contractions, and idiosyncratic species redistributions; (b) degradation of historic community structure, and increased taxonomic and climatic differentiation of the species inhabiting the two deserts; and (c) high levels of turnover at the transition zone but little range expansion of species from the warm, dry Mojave into the cooler, wetter Great Basin. Although both deserts now support more drier- and warmer-tolerant species, their bird communities still occupy distinct climatological space and differ significantly in climatic composition. Our results suggest a persistent transition zone between biomes contributes to limiting the redistribution of birds, and highlight the importance of understanding how transition zone dynamics impact responses to climate change.Transition zones between biomes, also known as ecotones, are areas of pronounced ecological change. They are primarily maintained by abiotic factors and disturbance regimes that could hinder or promote species range shifts in response to climate change. We evaluated how climate change has affected metacommunity dynamics in two adjacent biomes and across their ecotone by resurveying 106 sites that were originally surveyed for avian diversity in the early 20th century by Joseph Grinnell and colleagues. The Mojave, a warm desert, and the Great Basin, a cold desert, have distinct assemblages and meet along a contiguous, east-west boundary. Both deserts substantially warmed over the past century, but the Mojave dried while the Great Basin became wetter. We examined whether the distinctiveness and composition of desert avifaunas have changed, if species distributions shifted, and how the transition zone impacted turnover patterns. Avifauna change was characterized by (a) reduced occupancy, range contractions, and idiosyncratic species redistributions; (b) degradation of historic community structure, and increased taxonomic and climatic differentiation of the species inhabiting the two deserts; and (c) high levels of turnover at the transition zone but little range expansion of species from the warm, dry Mojave into the cooler, wetter Great Basin. Although both deserts now support more drier- and warmer-tolerant species, their bird communities still occupy distinct climatological space and differ significantly in climatic composition. Our results suggest a persistent transition zone between biomes contributes to limiting the redistribution of birds, and highlight the importance of understanding how transition zone dynamics impact responses to climate change.