Skip to main content
Dryad logo

Data from: Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes

Citation

Baier, Florian et al. (2019), Data from: Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes, Dryad, Dataset, https://doi.org/10.5061/dryad.qk653b3

Abstract

Genetic variation among orthologous proteins can cause cryptic phenotypic properties that only manifest in changing environments. Such variation may impact the evolvability of proteins, but the underlying molecular basis remains unclear. Here, we performed comparative directed evolution of four orthologous metallo-β-lactamases toward a new function and found that different starting genotypes evolved to distinct evolutionary outcomes. Despite a low initial fitness, one ortholog reached a significantly higher fitness plateau than its counterparts, via increasing catalytic activity. By contrast, the ortholog with the highest initial activity evolved to a less-optimal and phenotypically distinct outcome through changes in expression, oligomerization and activity. We show how cryptic molecular properties and conformational variation of active site residues in the initial genotypes cause epistasis, that could lead to distinct evolutionary outcomes. Our work highlights th e importance of understanding the molecular details that connect genetic variation to protein function to improve the prediction of protein evolution.

Usage Notes