Data from: Local adaptation in dispersal in multi-resource landscapes
Data files
Jan 28, 2019 version files 232.69 MB
Abstract
The distribution of resources in space has important consequences for the evolution of dispersal-related traits. Dispersal moderates patterns of gene flow and, consequently, the potential for local adaptation to spatially differentiated resource types. We lack both models and experiments that evaluate how dispersal evolves in landscapes with multiple resources. Here, we investigate the evolution of dispersal in landscapes that contain two resource types that differ in their spatial autocorrelations. Individuals may possess ecological traits that give them a fitness advantage on one or the other resource. We find that resources differing in their spatial autocorrelation select for different optimal dispersal strategies and, further, that some multi-resource landscapes can support the stable coexistence of distinct dispersal strategies. Whether divergence in dispersal strategies between resource specialists occurs depends on the underlying structure of the resources and the degree of linkage between dispersal strategies and ecological specialization. This work indicates that the spatial autocorrelation of resources is an important factor in determining when evolutionary branching is likely to occur, and sheds light on when secondary isolating mechanisms should arise between locally adapted specialists.