Data from: Incongruence between morphological and mitochondrial-DNA characters suggests hybrid origins of parthenogenetic weevil lineages (genus Aramigus)
Data files
Mar 21, 2008 version files 4.50 KB
-
10Dappend1.txt
-
10Dappend2.txt
Abstract
An expanded matrix of morphological characters for the genus Aramigus (Coleoptera: Curculionidae), which includes numerous polyploid parthenogenetic lineages, was compared and combined with a published matrix of mitochondrial DNA (mtDNA) characters. The matrix of morphological characters provides little resolution of the A. tessellatus and A. uruguayensis species complexes but does resolve previously unresolved relationships among other morphologically defined species (A. globoculus + A. intermedius, A. curtulus + A. planioculus). The morphological and mtDNA characters are significantly incongruent (0.435 ≤ IM ≤ 0.463; IMF = 0.0735), according to the tests of Farris et al. (P = 0.010) and Templeton (P < 0.005), probably because of hybrid origins of polyploid parthenogenetic lineages. For the few sexual lineages included in both matrices, morphology and mtDNA provide congruent estimates of phylogeny. In spite of recent injunctions against combining data sets that are incongruent because of differing histories, the results of the combined analyses were used to select one of the most-parsimonious mtDNA trees as the best estimate of maternal-lineage genealogy and to reconstruct the evolution of parthenogenesis under the assumption that transitions from sexuality to parthenogenesis are irreversible. Where cytogenetically justified, as in weevils, the irreversibility assumption is useful for producing conservative estimates of the age of parthenogenetic lineages in spite of potential sampling bias against sexuals.