Skip to main content
Dryad

Reactivating PTEN to impair glioma stem cells by inhibiting cytosolic iron-sulfur assembly pathway

Data files

Jan 02, 2024 version files 547.35 MB

Abstract

Glioblastoma (GBM), the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in GBMs, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here we found that PTEN directly interacts with MMS19 and competitively disrupts MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in the differentiated glioma cells (DGCs). Interrogation of GSCs, when compared with their matched DGCs, revealed that PTEN is specifically succinated at cysteine (C) 211 in GSCs. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in de novo purine synthesis pathway which is highly activated in GSCs, promotes PTEN C211 succination. This modification abrogates the interaction between PTEN and MMS19, thereby reactivating CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination through re-expressing PTEN C211S mutant, depleting ADSL, or consuming fumarate by N-acetylcysteine (NAC), an FDA-approved prescription drug, impairs GSC maintenance. Importantly, re-expressing PTEN C211S or treating with NAC sensitizes GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for GBM patients, by retarding CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs for treating GBMs by combined therapy with repurposing NAC.