Skip to main content
Dryad logo

Data from: Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus

Citation

Kashtan, Nadav et al. (2015), Data from: Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus, Dryad, Dataset, https://doi.org/10.5061/dryad.9r0p6

Abstract

Extensive genomic diversity within coexisting members of a microbial species has been revealed through selected cultured isolates and metagenomic assemblies. Yet, the cell-by-cell genomic composition of wild uncultured populations of co-occurring cells is largely unknown. In this work, we applied large-scale single-cell genomics to study populations of the globally abundant marine cyanobacterium Prochlorococcus. We show that they are composed of hundreds of subpopulations with distinct “genomic backbones,” each backbone consisting of a different set of core gene alleles linked to a small distinctive set of flexible genes. These subpopulations are estimated to have diverged at least a few million years ago, suggesting ancient, stable niche partitioning. Such a large set of coexisting subpopulations may be a general feature of free-living bacterial species with huge populations in highly mixed habitats.

Usage Notes

References