Skip to main content
Dryad

Trophic rewilding revives biotic resistance to shrub invasion

Abstract

Trophic rewilding seeks to rehabilitate degraded ecosystems by repopulating them with large animals, thereby reestablishing strong top-down interactions. Yet there are vanishingly few tests of whether such initiatives can restore ecosystem structure and functions, and on what timescales. Here we show that war-induced collapse of large-mammal populations in Mozambique’s Gorongosa National Park exacerbated woody encroachment by the invasive shrub Mimosa pigra—one of the world’s ‘100 worst’ invasive species—and that one decade of concerted trophic rewilding restored this invasion to pre-war baseline levels. Mimosa occurrence increased between 1972 and 2015, a period encompassing the near-extirpation of large herbivores during the Mozambican Civil War. From 2015–2019, mimosa abundance declined as ungulate biomass recovered. DNA metabarcoding revealed that ruminant herbivores fed heavily on mimosa, and experimental exclosures confirmed the causal role of mammalian herbivory in containing shrub encroachment. Our results provide mechanistic evidence that trophic rewilding has rapidly revived biotic resistance to a notorious woody invader, underscoring the potential for restoring ecosystem structure and functions in degraded African protected areas.