Gut microbiota sequences of the long-tailed dwarf hamster (Cricetulus longicaudatus) using 16S rDNA
Data files
May 23, 2024 version files 25.91 GB
-
LS-0_d-1.fastq
78.46 MB
-
LS-0_d-2.fastq
75.73 MB
-
LS-0_d-3.fastq
73.60 MB
-
LS-0_d-4.fastq
75.04 MB
-
LS-0_d-5.fastq
74.57 MB
-
LS-14_d-1.fastq
76.91 MB
-
LS-14_d-2.fastq
75.63 MB
-
LS-14_d-3.fastq
70.30 MB
-
LS-14_d-4.fastq
81.48 MB
-
LS-14_d-5.fastq
70.75 MB
-
LS-21_d-1.fastq
75.98 MB
-
LS-21_d-2.fastq
72.19 MB
-
LS-21_d-3.fastq
77.15 MB
-
LS-21_d-4.fastq
75.37 MB
-
LS-21_d-5.fastq
79.50 MB
-
LS-28_d-1.fastq
81.18 MB
-
LS-28_d-2.fastq
76.71 MB
-
LS-28_d-3.fastq
79.47 MB
-
LS-28_d-4.fastq
70.81 MB
-
LS-28_d-5.fastq
71.28 MB
-
LS-35_d-1.fastq
67.75 MB
-
LS-35_d-2.fastq
73.22 MB
-
LS-35_d-3.fastq
84.30 MB
-
LS-35_d-4.fastq
79.86 MB
-
LS-35_d-5.fastq
69.97 MB
-
LS-7_d-1.fastq
76.03 MB
-
LS-7_d-2.fastq
77.52 MB
-
LS-7_d-3.fastq
75.87 MB
-
LS-7_d-4.fastq
76.81 MB
-
LS-7_d-5.fastq
69.71 MB
-
MIX-14_d-1.fastq
71.75 MB
-
MIX-14_d-2.fastq
81.10 MB
-
MIX-14_d-3.fastq
115.07 MB
-
MIX-14_d-4.fastq
112.21 MB
-
MIX-14_d-5.fastq
114.20 MB
-
MIX-21_d-1.fastq
78.92 MB
-
MIX-21_d-2.fastq
80.78 MB
-
MIX-21_d-3.fastq
114.29 MB
-
MIX-21_d-4.fastq
117.92 MB
-
MIX-21_d-5.fastq
111.87 MB
-
MIX-28_d-1.fastq
76.96 MB
-
MIX-28_d-2.fastq
74.59 MB
-
MIX-28_d-3.fastq
116.23 MB
-
MIX-28_d-4.fastq
91.63 MB
-
MIX-28_d-5.fastq
89.84 MB
-
MIX-35_d-1.fastq
77.38 MB
-
MIX-35_d-2.fastq
80.42 MB
-
MIX-35_d-3.fastq
84.71 MB
-
MIX-35_d-4.fastq
117.89 MB
-
MIX-35_d-5.fastq
109.54 MB
-
MIX-7_d-1.fastq
84.29 MB
-
MIX-7_d-2.fastq
76.95 MB
-
MIX-7_d-3.fastq
113.66 MB
-
MIX-7_d-4.fastq
115.88 MB
-
MIX-7_d-5.fastq
116.25 MB
-
README.md
6.88 KB
-
WA-14_d-1.fastq
74.54 MB
-
WA-14_d-2.fastq
71.40 MB
-
WA-14_d-3.fastq
113.20 MB
-
WA-14_d-4.fastq
119.55 MB
-
WA-14_d-5.fastq
110.23 MB
-
WA-21_d-1.fastq
73.25 MB
-
WA-21_d-2.fastq
76 MB
-
WA-21_d-3.fastq
115.52 MB
-
WA-21_d-4.fastq
123.89 MB
-
WA-21_d-5.fastq
114.14 MB
-
WA-28_d-1.fastq
72.67 MB
-
WA-28_d-2.fastq
75.82 MB
-
WA-28_d-3.fastq
117.27 MB
-
WA-28_d-4.fastq
117.37 MB
-
WA-28_d-5.fastq
118.45 MB
-
WA-35_d-1.fastq
71.58 MB
-
WA-35_d-2.fastq
73.93 MB
-
WA-35_d-3.fastq
114.97 MB
-
WA-35_d-4.fastq
78.30 MB
-
WA-35_d-5.fastq
112.49 MB
-
WA-7_d-1.fastq
68.92 MB
-
WA-7_d-2.fastq
76.85 MB
-
WA-7_d-3.fastq
104.92 MB
-
WA-7_d-4.fastq
101.44 MB
-
WA-7_d-5.fastq
125.15 MB
-
WH-14_d-1.fastq
80.32 MB
-
WH-14_d-2.fastq
75.95 MB
-
WH-14_d-3.fastq
104.02 MB
-
WH-14_d-4.fastq
111 MB
-
WH-14_d-5.fastq
117.56 MB
-
WH-21_d-1.fastq
75.69 MB
-
WH-21_d-2.fastq
77.92 MB
-
WH-21_d-3.fastq
117.78 MB
-
WH-21_d-4.fastq
115.80 MB
-
WH-21_d-5.fastq
116.36 MB
-
WH-28_d-1.fastq
78.13 MB
-
WH-28_d-2.fastq
68.68 MB
-
WH-28_d-3.fastq
109.86 MB
-
WH-28_d-4.fastq
118.08 MB
-
WH-28_d-5.fastq
126.13 MB
-
WH-35_d-1.fastq
74.52 MB
-
WH-35_d-2.fastq
72.34 MB
-
WH-35_d-3.fastq
89.87 MB
-
WH-35_d-4.fastq
116.07 MB
-
WH-35_d-5.fastq
110.85 MB
-
WH-7_d-1.fastq
81.41 MB
-
WH-7_d-2.fastq
73.51 MB
-
WH-7_d-3.fastq
95.34 MB
-
WH-7_d-4.fastq
73.24 MB
-
WH-7_d-5.fastq
112.26 MB
-
WM-14_d-1.fastq
81.15 MB
-
WM-14_d-2.fastq
74.97 MB
-
WM-14_d-3.fastq
104.92 MB
-
WM-14_d-4.fastq
118.64 MB
-
WM-14_d-5.fastq
118.63 MB
-
WM-21_d-1.fastq
79.92 MB
-
WM-21_d-2.fastq
68.71 MB
-
WM-21_d-3.fastq
115.52 MB
-
WM-21_d-4.fastq
120.98 MB
-
WM-21_d-5.fastq
103.89 MB
-
WM-28_d-1.fastq
82.65 MB
-
WM-28_d-2.fastq
76.55 MB
-
WM-28_d-3.fastq
117.27 MB
-
WM-28_d-4.fastq
107.66 MB
-
WM-28_d-5.fastq
85.03 MB
-
WM-35_d-1.fastq
71.53 MB
-
WM-35_d-2.fastq
74.13 MB
-
WM-35_d-3.fastq
114.97 MB
-
WM-35_d-4.fastq
115.22 MB
-
WM-35_d-5.fastq
124.72 MB
-
WM-7_d-1.fastq
74.21 MB
-
WM-7_d-2.fastq
76.08 MB
-
WM-7_d-3.fastq
113.20 MB
-
WM-7_d-4.fastq
124.72 MB
-
WM-7_d-5.fastq
109.28 MB
-
WP-14_d-1.fastq
84.18 MB
-
WP-14_d-2.fastq
81.47 MB
-
WP-14_d-3.fastq
78.67 MB
-
WP-14_d-4.fastq
119.50 MB
-
WP-14_d-5.fastq
120.97 MB
-
WP-21_d-1.fastq
75.51 MB
-
WP-21_d-2.fastq
79.74 MB
-
WP-21_d-3.fastq
107.29 MB
-
WP-21_d-4.fastq
75.02 MB
-
WP-21_d-5.fastq
92.05 MB
-
WP-28_d-1.fastq
69.54 MB
-
WP-28_d-2.fastq
80.06 MB
-
WP-28_d-3.fastq
125.13 MB
-
WP-28_d-4.fastq
114.72 MB
-
WP-28_d-5.fastq
116.78 MB
-
WP-35_d-1.fastq
79.18 MB
-
WP-35_d-2.fastq
73.45 MB
-
WP-35_d-3.fastq
113.84 MB
-
WP-35_d-4.fastq
118.17 MB
-
WP-35_d-5.fastq
122.33 MB
-
WP-7_d-1.fastq
78.38 MB
-
WP-7_d-2.fastq
83.68 MB
-
WP-7_d-3.fastq
116.52 MB
-
WP-7_d-4.fastq
122.97 MB
-
WP-7_d-5.fastq
116.23 MB
-
WT-0_d-1.fastq
80.59 MB
-
WT-0_d-2.fastq
77.78 MB
-
WT-0_d-3.fastq
73.12 MB
-
WT-0_d-4.fastq
74.37 MB
-
WT-0_d-5.fastq
78.55 MB
-
WT-14_d-1.fastq
80.70 MB
-
WT-14_d-2.fastq
68.66 MB
-
WT-14_d-3.fastq
74.37 MB
-
WT-14_d-4.fastq
78.80 MB
-
WT-14_d-5.fastq
76.42 MB
-
WT-21_d-1.fastq
75.05 MB
-
WT-21_d-2.fastq
82.06 MB
-
WT-21_d-3.fastq
76.53 MB
-
WT-21_d-4.fastq
69.80 MB
-
WT-21_d-5.fastq
80.90 MB
-
WT-28_d-1.fastq
77.35 MB
-
WT-28_d-2.fastq
67.16 MB
-
WT-28_d-3.fastq
79.31 MB
-
WT-28_d-4.fastq
75.20 MB
-
WT-28_d-5.fastq
76.58 MB
-
WT-35_d-1.fastq
84.73 MB
-
WT-35_d-2.fastq
78.80 MB
-
WT-35_d-3.fastq
72.02 MB
-
WT-35_d-4.fastq
74.91 MB
-
WT-35_d-5.fastq
82.72 MB
-
WT-7_d-1.fastq
72.51 MB
-
WT-7_d-2.fastq
78.52 MB
-
WT-7_d-3.fastq
83.55 MB
-
WT-7_d-4.fastq
74.46 MB
-
WT-7_d-5.fastq
72.28 MB
-
XX-0_d-1.fastq
113.11 MB
-
XX-0_d-2.fastq
118.91 MB
-
XX-0_d-3.fastq
123.07 MB
-
XX-0_d-4.fastq
126.46 MB
-
XX-0_d-5.fastq
115.50 MB
-
XX-14_d-1.fastq
123.81 MB
-
XX-14_d-2.fastq
104.48 MB
-
XX-14_d-3.fastq
115.58 MB
-
XX-14_d-4.fastq
97.73 MB
-
XX-14_d-5.fastq
113.75 MB
-
XX-21_d-1.fastq
111.70 MB
-
XX-21_d-2.fastq
102.07 MB
-
XX-21_d-3.fastq
120.95 MB
-
XX-21_d-4.fastq
116.01 MB
-
XX-21_d-5.fastq
116.51 MB
-
XX-28_d-1.fastq
117.95 MB
-
XX-28_d-2.fastq
123.90 MB
-
XX-28_d-3.fastq
118.51 MB
-
XX-28_d-4.fastq
119.86 MB
-
XX-28_d-5.fastq
118.19 MB
-
XX-35_d-1.fastq
124.11 MB
-
XX-35_d-2.fastq
111.44 MB
-
XX-35_d-3.fastq
118.11 MB
-
XX-35_d-4.fastq
116.74 MB
-
XX-35_d-5.fastq
107.90 MB
-
XX-7_d-1.fastq
57.59 MB
-
XX-7_d-2.fastq
117.43 MB
-
XX-7_d-3.fastq
114.91 MB
-
XX-7_d-4.fastq
115.21 MB
-
XX-7_d-5.fastq
114.63 MB
-
YC-0_d-1.fastq
115.73 MB
-
YC-0_d-2.fastq
76.62 MB
-
YC-0_d-3.fastq
122.57 MB
-
YC-0_d-4.fastq
99.38 MB
-
YC-0_d-5.fastq
114.55 MB
-
YC-14_d-1.fastq
120.05 MB
-
YC-14_d-2.fastq
118.29 MB
-
YC-14_d-3.fastq
125.16 MB
-
YC-14_d-4.fastq
45.94 MB
-
YC-14_d-5.fastq
59 MB
-
YC-21_d-1.fastq
93.80 MB
-
YC-21_d-2.fastq
55.07 MB
-
YC-21_d-3.fastq
55.70 MB
-
YC-21_d-4.fastq
58.78 MB
-
YC-21_d-5.fastq
82.54 MB
-
YC-28_d-1.fastq
102.38 MB
-
YC-28_d-2.fastq
46.38 MB
-
YC-28_d-3.fastq
113.74 MB
-
YC-28_d-4.fastq
115.89 MB
-
YC-28_d-5.fastq
121.37 MB
-
YC-35_d-1.fastq
124.54 MB
-
YC-35_d-2.fastq
75.57 MB
-
YC-35_d-3.fastq
117.40 MB
-
YC-35_d-4.fastq
124.90 MB
-
YC-35_d-5.fastq
92.37 MB
-
YC-7_d-1.fastq
64.29 MB
-
YC-7_d-2.fastq
107.03 MB
-
YC-7_d-3.fastq
123.35 MB
-
YC-7_d-4.fastq
112.89 MB
-
YC-7_d-5.fastq
95.54 MB
-
ZQ-0_d-1.fastq
123.06 MB
-
ZQ-0_d-2.fastq
103.12 MB
-
ZQ-0_d-3.fastq
119.56 MB
-
ZQ-0_d-4.fastq
119.62 MB
-
ZQ-0_d-5.fastq
82.96 MB
-
ZQ-14_d-1.fastq
115.07 MB
-
ZQ-14_d-2.fastq
85.14 MB
-
ZQ-14_d-3.fastq
106.50 MB
-
ZQ-14_d-4.fastq
99.64 MB
-
ZQ-14_d-5.fastq
93.71 MB
-
ZQ-21_d-1.fastq
93.43 MB
-
ZQ-21_d-2.fastq
111.12 MB
-
ZQ-21_d-3.fastq
109.84 MB
-
ZQ-21_d-4.fastq
89.87 MB
-
ZQ-21_d-5.fastq
82.40 MB
-
ZQ-28_d-1.fastq
111.63 MB
-
ZQ-28_d-2.fastq
113.56 MB
-
ZQ-28_d-3.fastq
114.41 MB
-
ZQ-28_d-4.fastq
96.96 MB
-
ZQ-28_d-5.fastq
65.32 MB
-
ZQ-35_d-1.fastq
71.74 MB
-
ZQ-35_d-2.fastq
69.29 MB
-
ZQ-35_d-3.fastq
85 MB
-
ZQ-35_d-4.fastq
107.43 MB
-
ZQ-35_d-5.fastq
98.54 MB
-
ZQ-7_d-1.fastq
111.90 MB
-
ZQ-7_d-2.fastq
80.05 MB
-
ZQ-7_d-3.fastq
69.24 MB
-
ZQ-7_d-4.fastq
106.01 MB
-
ZQ-7_d-5.fastq
81.23 MB
Abstract
In the summer of 2022, natural populations of Cricetulus longicaudatus were captured using cage trapping from Wutai County (WT), Lishi District (LS), Yuci District (YC), Xi County (XX) and Zuoquan County (ZQ) in Shanxi, China. Based on 16S rDNA high-throughput sequencing combined with bioinformatics analysis was used to investigate the succession process of the gut microbiota and effects of different nutrients on the composition and function of the gut microbiota.
README
The experiment was divided into two phases. First, the animals were grouped by geographical location: WT group (n=5), LS group (n=5), YC group (n=5), XX group (n=5), and ZQ group (n=5). Fresh feces were collected in the wild, denoted as day 0 sample, and fresh faeces collected on day 7, day 14, day 21, day 28, and day 35 were recorded as samples on day 7, day 14, day 21, day 28 and day 35, respectively. For example, “WT-14 d-1” represents the fecal sample sequences of individual 1 in WT group on day 14.
In the second phase, 25 individuals were re-randomized according to diet: WH group (n=5), WA group (n=5), WP group (n=5), WM group (n=5), and MIX group (n=5). Fecal samples after re-randomization were recorded as day 0 samples, and fresh faeces collected on day 7, day 14, day 21, day 28, and day 35 were recorded as samples on day 7, day 14, day 21, day 28 and day 35, respectively. For example, “WH-28 d-2” represents the fecal sample sequences of individual 2 in WH group on day 28.
Sample title:Group - Sampling time - Cricetulus longicaudatus number
WT-0 d-1, WT-7 d-1 ,WT-14 d-1 ,WT-21 d-1 ,WT-28 d-1, WT-35 d-1
WT-0 d-2 ,WT-7 d-2 ,WT-14 d-2 ,WT-21 d-2 ,WT-28 d-2 ,WT-35 d-2
WT-0 d-3,WT-7 d-3 ,WT-14 d-3 ,WT-21 d-3 ,WT-28 d-3 ,WT-35 d-3
WT-0 d-4 ,WT-7 d-4 ,WT-14 d-4 ,WT-21 d-4 ,WT-28 d-4 ,WT-35 d-4
WT-0 d-5 ,WT-7 d-5 ,WT-14 d-5 ,WT-21 d-5 ,WT-28 d-5 ,WT-35 d-5
LS-0 d-1 ,LS-7 d-1 ,LS-14 d-1 ,LS-21 d-1 ,LS-28 d-1 ,LS-35 d-1
LS-0 d-2 ,LS-7 d-2 ,LS-14 d-2 ,LS-21 d-2 ,LS-28 d-2 ,LS-35 d-2
LS-0 d-3 ,LS-7 d-3 ,LS-14 d-3 ,LS-21 d-3 ,LS-28 d-3 ,LS-35 d-3
LS-0 d-4 ,LS-7 d-4 ,LS-14 d-4 ,LS-21 d-4 ,LS-28 d-4 ,LS-35 d-4
LS-0 d-5 ,LS-7 d-5 ,LS-14 d-5 ,LS-21 d-5 ,LS-28 d-5 ,LS-35 d-5
YC-0 d-1 ,YC-7 d-1 ,YC-14 d-1 ,YC-21 d-1 ,YC-28 d-1 ,YC-35 d-1
YC-0 d-2 ,YC-7 d-2 ,YC-14 d-2 ,YC-21 d-2 ,YC-28 d-2 ,YC-35 d-2
YC-0 d-3 ,YC-7 d-3 ,YC-14 d-3 ,YC-21 d-3 ,YC-28 d-3 ,YC-35 d-3
YC-0 d-4 ,YC-7 d-4 ,YC-14 d-4 ,YC-21 d-4 ,YC-28 d-4 ,YC-35 d-4
YC-0 d-5 ,YC-7 d-5 ,YC-14 d-5 ,YC-21 d-5 ,YC-28 d-5 ,YC-35 d-5
XX-0 d-1 ,XX-7 d-1 ,XX-14 d-1 ,XX-21 d-1 ,XX-28 d-1 ,XX-35 d-1
XX-0 d-2 ,XX-7 d-2 XX-14 d-2 XX-21 d-2 XX-28 d-2 XX-35 d-2
XX-0 d-3 ,XX-7 d-3 ,XX-14 d-3 ,XX-21 d-3 ,XX-28 d-3 ,XX-35 d-3
XX-0 d-4 ,XX-7 d-4 ,XX-14 d-4 ,XX-21 d-4 ,XX-28 d-4 ,XX-35 d-4
XX-0 d-5 ,XX-7 d-5 ,XX-14 d-5 ,XX-21 d-5 ,XX-28 d-5 ,XX-35 d-5
ZQ-0 d-1 ,ZQ-7 d-1 ,ZQ-14 d-1 ,ZQ-21 d-1 ,ZQ-28 d-1 ,ZQ-35 d-1
ZQ-0 d-2 ,ZQ-7 d-2 ,ZQ-14 d-2 ,ZQ-21 d-2 ,ZQ-28 d-2 ,ZQ-35 d-2
ZQ-0 d-3 ,ZQ-7 d-3 ,ZQ-14 d-3 ,ZQ-21 d-3 ,ZQ-28 d-3 ,ZQ-35 d-3
ZQ-0 d-4 ,ZQ-7 d-4 ,ZQ-14 d-4 ,ZQ-21 d-4 ,ZQ-28 d-4 ,ZQ-35 d-4
ZQ-0 d-5 ,ZQ-7 d-5 ,ZQ-14 d-5 ,ZQ-21 d-5 ,ZQ-28 d-5 ,ZQ-35 d-5
WH-7 d-1 ,WH-14 d-1 ,WH-21 d-1 ,WH-28 d-1 ,WH-35 d-1
WH-7 d-2 ,WH-14 d-2 ,WH-21 d-2 ,WH-28 d-2 ,WH-35 d-2
WH-7 d-3 ,WH-14 d-3 ,WH-21 d-3 ,WH-28 d-3 ,WH-35 d-3
WH-7 d-4 ,WH-14 d-4 ,WH-21 d-4 ,WH-28 d-4 ,WH-35 d-4
WH-7 d-5 ,WH-14 d-5 ,WH-21 d-5 ,WH-28 d-5 ,WH-35 d-5
WA-7 d-1 ,WA-14 d-1 ,WA-21 d-1 ,WA-28 d-1 ,WA-35 d-1
WA-7 d-2 ,WA-14 d-2 ,WA-21 d-2 ,WA-28 d-2 ,WA-35 d-2
WA-7 d-3 ,WA-14 d-3 ,WA-21 d-3 ,WA-28 d-3 ,WA-35 d-3
WA-7 d-4 ,WA-14 d-4 ,WA-21 d-4 ,WA-28 d-4 ,WA-35 d-4
WA-7 d-5 ,WA-14 d-5 ,WA-21 d-5 ,WA-28 d-5 ,WA-35 d-5
WP-7 d-1 ,WP-14 d-1 ,WP-21 d-1 ,WP-28 d-1 ,WP-35 d-1
WP-7 d-2 ,WP-14 d-2 ,WP-21 d-2 ,WP-28 d-2 ,WP-35 d-2
WP-7 d-3 ,WP-14 d-3 ,WP-21 d-3 ,WP-28 d-3 ,WP-35 d-3
WP-7 d-4 ,WP-14 d-4 ,WP-21 d-4 ,WP-28 d-4 ,WP-35 d-4
WP-7 d-5 ,WP-14 d-5 ,WP-21 d-5 ,WP-28 d-5 ,WP-35 d-5
WM-7 d-1 ,WM-14 d-1 ,WM-21 d-1 ,WM-28 d-1 ,WM-35 d-1
WM-7 d-2 ,WM-14 d-2 ,WM-21 d-2 ,WM-28 d-2 ,WM-35 d-2
WM-7 d-3 ,WM-14 d-3 ,WM-21 d-3 ,WM-28 d-3 ,WM-35 d-3
WM-7 d-4 ,WM-14 d-4 ,WM-21 d-4 ,WM-28 d-4 ,WM-35 d-4
WM-7 d-5 ,WM-14 d-5 ,WM-21 d-5 ,WM-28 d-5 ,WM-35 d-5
MIX-7 d-1 ,MIX-14 d-1 ,MIX-21 d-1 ,MIX-28 d-1 ,MIX-35 d-1
MIX-7 d-2 ,MIX-14 d-2 ,MIX-21 d-2 ,MIX-28 d-2 ,MIX-35 d-2
MIX-7 d-3 ,MIX-14 d-3 ,MIX-21 d-3 ,MIX-28 d-3 ,MIX-35 d-3
Methods
Fastp 0.19.6 software was used for quality control and raw data filtering. Paired-end sequences based on overlapping regions were merged in Flash 1.2.11 software. Filtering the obtained merged sequences, we retained sequences with length > 200 bp, without ambiguous bases, and with an average sequence quality score≥ 20. Detected chimeric sequences were removed using Uchime 11.0 to obtain high-quality, valid data. The valid data for clustering analysis using the Uparse algorithm were divided into Operational Taxonomic Units (OTUs) based on a similarity threshold of≥ 97%. The standardized process was executed by single_rarefaction.py, followed by OTU clustering analysis after distinguishing sequences by sample. The representative sequences of OTUs were classified using RDP classifier 2.11, and the composition of each sample’s community was tallied.